精英家教网 > 高中数学 > 题目详情
12.将函数$f(x)=cos({x+\frac{π}{3}})$的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,所得图象的一条对称轴方程可能是(  )
A.$x=\frac{π}{3}$B.$x=-\frac{π}{6}$C.$x=-\frac{π}{3}$D.$x=-\frac{2π}{3}$

分析 由条件根据函数y=Acos(ωx+φ)的图象变换规律,余弦函数的图象的对称性,可得结论.

解答 解:将函数y=cos(x+$\frac{π}{3}$)的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),可得函数y=cos($\frac{1}{2}$x+$\frac{π}{3}$)的图象;
令$\frac{1}{2}$x+$\frac{π}{3}$=kπ,k∈z,求得x=2kπ$-\frac{2π}{3}$,
故所得函数的图象的一条对称轴方程为x=$-\frac{2π}{3}$,
故选:D.

点评 本题主要考查函数y=Acos(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.数列{an-bn}为等比数列,公比q>0,首项为1,数列{bn}的前n项和Sn,若Sn=$\frac{n}{2(n+2)}$(n∈N+),a3=$\frac{81}{20}$.
(1)求数列{bn}的通项公式;
(2)求数列{an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若函数f(x)的图象从左到右先增后减,则称函数f(x)为“∩型函数”,图象的最高点的横坐标称为“∩点”.
(1)分别判断函数f(x)=lnx-x与函数g(x)=x2-3x+lnx是否为“∩型函数”.若是,求出它的“∩点”,若不是,试说明理由.
(2)若关于x的方程g(x)+b=0在区间[$\frac{1}{2}$,2]上恰有两个不相等的实数根,求实数b的取值范围;
(3)证明:$\sum_{i=1}^{n}$$\frac{(k-1)^{2}}{{k}^{2}}$-3×$\sum_{i=1}^{n}$$\frac{k-1}{k}$<lnn-n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知角α的终边在函数y=-|x|的图象上,则cosα的值为±$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=lnx,g(x)=$\frac{(x-1)(1-λ+λx)}{x}$(其中λ为常数).
(1)若设F(x)=lnx-ax,讨论F(x)单调性;
(2)求证:当λ≥$\frac{1}{2}$时,f(x)≤g(x)在[1,+∞)上恒成立;
(3)设数列{an}的通项公式为an=1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$,证明a2n-an+$\frac{1}{2n}$>ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.11位数的手机号码,前七位是1581870,如果后四位只能从数字1,3,7中选取,且每个数字至少出现一次,那么存在1与3相邻的手机号码的个数是26.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,M为AB的中点,△PAD为等边三角形,且平面PAD⊥平面ABCD.
(Ⅰ)证明:PM⊥BC.
(Ⅱ)若PD=1,求点D到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱柱ABC-A1B1C1中,D,D1分别是AC,A1C1上的点,若平面BC1D∥平面AB1D1,求$\frac{AD}{DC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.数列{an}为等差数列,满足a2+a4+…+a20=10,则数列{an}前21 项的和等于(  )
A.$\frac{21}{2}$B.21C.42D.84

查看答案和解析>>

同步练习册答案