精英家教网 > 高中数学 > 题目详情
20.已知角α的终边在函数y=-|x|的图象上,则cosα的值为±$\frac{\sqrt{2}}{2}$.

分析 由条件利用任意角的三角函数的定义,分类讨论求得cosα的值.

解答 解:由题意可得,角α的终边在第三象限或第四象限,
若角α的终边在第三象限,则在α的中边上任意取一点M(-1,-1),则cosα=$\frac{-1}{\sqrt{2}}$=-$\frac{\sqrt{2}}{2}$,
若角α的终边在第四象限,则在α的中边上任意取一点M′(1,-1),则cosα=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
故答案为:±$\frac{\sqrt{2}}{2}$.

点评 本题主要考查任意角的三角函数的定义,体现了分类讨论的数学思想.属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知一个正三棱柱,一个体积为$\frac{4π}{3}$的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是$18\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在△ABC中,$\overrightarrow{AD}$•$\overrightarrow{BC}$=0,$\overrightarrow{BC}$=3$\overrightarrow{BD}$,过点D的直线分别交直线AB,AC于点M,N.若$\overrightarrow{AM}$=λ$\overrightarrow{AB}$,$\overrightarrow{AN}$=μ$\overrightarrow{AC}$(λ>0,μ>0),则λ+2μ的最小值是$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=$\frac{{e}^{x}}{{x}^{2}}-k(\frac{2}{x}+lnx)$(k为常数,e是自然对数的底数).
(1)当k≤0时,求函数f(x)的单调区间;
(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.“无字证明”(proofs without words)就是将数学命题用简单、有创意而且易于理解的几何图形来呈现,请利用下面两个三角形(△ACD和△ECD)的面积关系,写出高中数学中的一个重要关系式:$\sqrt{ab}≤\frac{1}{2}(a+b)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在长方体ABCD-A1B1C1D1中,DA=DC=1,DD1=2,点P在棱CC1上.
(1)求异面直线AB与A1C所成角的余弦值;
(2)若∠A1PB=90°,记二面角A-A1B-P的平面角为θ,求sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.将函数$f(x)=cos({x+\frac{π}{3}})$的图象上各点的纵坐标不变,横坐标伸长到原来的2倍,所得图象的一条对称轴方程可能是(  )
A.$x=\frac{π}{3}$B.$x=-\frac{π}{6}$C.$x=-\frac{π}{3}$D.$x=-\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,且AB=AD,PD⊥底面ABCD,
(Ⅰ)证明:PB⊥AC;
(Ⅱ)若PD=BD=2AC,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.岳阳市为了改善整个城市的交通状况,对过洞庭大桥的车辆通行能力进行调查.统计数据显示:在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过30辆/千米时,车流速度为85千米/小时,研究表明:当30≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.

查看答案和解析>>

同步练习册答案