精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+2bx2-3x的极值点是x=1和x=-1.
(1)证明:当x1,x2∈[-2,2]时,|f(x1)-f(x2)|≤4;
(2)若过点A(1,t)可作曲线y=f(x)的三条切线,求t的取值范围.
考点:利用导数研究函数的极值,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(1)求导函数,利用函数f(x)=ax3+2bx2-3x的极值点是x=1和x=-1,建立方程组,即可求得a,b的值;利用导数求函数的最值即可.
(2)可设出切点坐标M(x0,y0),然后用两种方式表示出斜率,建立关于切点横坐标的方程2x03-3x02+t+3=0,再借助函数的单调性与极值确定其有三个解的条件即可.
解答: 解:(1)求导函数,可得f′(x)=3ax2+4bx-3
∵函数f(x)=ax3+2bx2-3x的极值点是x=1和x=-1.
∴f′(1)=0,且f′(-1)=0  
3a+4b-3=0
3a-4b-3=0

∴a=1,b=0
此时f′(x)=3x2-3=3(x+1)(x-1),
可知x=1和x=-1是函数f(x)=ax3+2bx2-3x的极值点;
∴f(x)=x3-3x,
当-1<x<1时,f′(x)<0,故f(x)在区间[-1,1]上为减函数,
当-2≤x<-1或1<x≤2时,f′(x)>0,故f(x)在区间[-2,-1)和(1,2]上为增函数,
∴fmax(x)=f(-1)=2,fmin(x)=f(1)=-2
∵对于区间[-2,2]上任意两个自变量的值x1,x2
都有|f(x1)-f(x2)|≤|fmax(x)-fmin(x)|=2-(-2)=4.
(2)f′(x)=3x2-3=3(x+1)(x-1),
∵曲线方程为y=x3-3x,∴点A(1,t)不在曲线上.
设切点为M(x0,y0),切线的斜率为3(x02-1)=
x03-3x0-t
x0-1
.(左边用导数求出,右边用斜率的两点式求出),
整理得2x03-3x02+t+3=0.
∵过点A(1,t)可作曲线的三条切线,故此方程有三个不同解,下研究方程解有三个时参数所满足的条件.
设g(x0)=2x03-3x02+t+3,则g′(x0)=6x02-6x0
由g′(x0)=0,得x0=0或x0=1.
∴g(x0)在(-∞,0),(1,+∞)上单调递增,在(0,1)上单调递减.
∴函数g(x0)=2x03-3x02+t+3的极值点为x0=0,x0=1,
∴关于x0方程2x03-3x02+t+3=0有三个实根的充要条件是
g(0)>0
g(1)<0

解得-3<t<-2.
故所求的实数t的取值范围是-3<t<-2.
点评:本题考点是利用导数研究函数的单调性,考查了函数极值存在的条件,利用导数求函数最值的方法以及导数研究函数在某点切线的问题,本题涉及到了求导公式,求最值的方法,导数的几何意义等,综合性强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的顶点A(2,2),顶点B在直线l1:y=
1
2
x上,顶点C在直线l2:y=2x上,则△ABC周长的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

我们可以运用下面的原理解决一些相关图形的面积问题:如果与一固定直线平行的直线被甲、乙两个封闭图形所截得线段的比为定值K,那么甲的面积是乙的面积的K倍,你可以从给出的简单图形①(甲:大矩形ABCD、乙:小矩形EFCD)、②(甲:大直角三角形ABC乙:小直角三角形DBC)中体会这个原理,现在图③中的曲线分别是
x2
a2
+
y2
b2
=1(a>b>0)与x2+y2=a2,运用上面的原理,图③中椭圆的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
2
x2-(4+a)x+6ln(x+b),g(x)=5ln(x+b)+
1
2
x2-3x,函数f(x)在x=1与x=2处取得极值.
(1)求实数a、b的值;
(2)若φ(x)=f(x)-g(x),求证:当x∈(-1,+∞)时,φ(x)≤0恒成立;
(3)证明:若x>0,y>0,则xlnx+ylny≥(x+y)ln
x+y
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
2x2-2x+2
x2+1

(1)求f(x)的值域;
(2)判断F(x)=lgf(x)在[-1,1]上的单调性,并说明理由;
(3)求证:lg
7
5
≤F(|t-
1
6
|-|t+
1
6
|)≤lg
13
5
(t∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
4
x4-
1
2
ax3
+4x-3(a>0).
(Ⅰ)若f(x)在x=1处切线与直线x+2y-3=0垂直,求a的值;
(Ⅱ)若f(x)在[0,+∞)为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

与曲线
x2
24
+
y2
49
=1共焦点,而与曲线
x2
36
-
y2
64
=1共渐近线的双曲线方程为(  )
A、
y2
16
-
x2
9
=1
B、
x2
16
-
y2
9
=1
C、
y2
9
-
x2
16
=1
D、
x2
9
-
y2
16
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
c
是不共面的三个向量,则下列向量组能作为一个基底的是(  )
A、2
a
a
-
b
a
+2
b
B、2
b
b
-
a
b
+2
a
C、
a
,2
b
b
-
c
D、
c
a
+
c
a
-
c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C三点不共线,O为平面ABC外的一点,
OP
=
1
5
OA
+
2
3
OB
OC
,且P与A、B、C四点共面,则λ的值为(  )
A、
1
3
B、
2
15
C、-
13
15
D、不能确定

查看答案和解析>>

同步练习册答案