分析 根据余弦定理和面积公式可求得sinA,cosA,利用正弦定理把b,c用sinB,sinC表示出来,在△ACD中使用余弦定理得出中线AD2关于B的函数,根据B的范围求出中线AD的最值.
解答 解:∵S=a2-(b-c)2=a2-b2-c2+2bc,
b2+c2-a2=2bccosA,
S=$\frac{1}{2}bcsinA$,
∴2bc(1-cosA)=$\frac{1}{2}$bcsinA,
∴sinA=4-4cosA,
又∵sin2A+cos2A=1,
∴cosA=$\frac{15}{17}$,sinA=$\frac{8}{17}$.
由正弦定理得$\frac{b}{sinB}=\frac{c}{sinC}=\frac{a}{sinA}=\frac{2}{\frac{8}{17}}=\frac{17}{4}$,
∴b=$\frac{17}{4}sinB$,c=$\frac{17}{4}sinC$.
设BC的中点为D,则CD=$\frac{1}{2}AB=1$.
在△ACD中,由余弦定理得AD2=CD2+AC2-2AC•CDcosC=1+$\frac{289}{16}$sin2B-$\frac{17}{2}sinB$cosC.
∵cosC=-cos(A+B)=sinAsinB-cosAcosB=$\frac{8}{17}sinB-\frac{15}{17}cosB$,
∴AD2=1+$\frac{289}{16}$sin2B-$\frac{17}{2}sinB$($\frac{8}{17}sinB-\frac{15}{17}cosB$)=$\frac{225}{16}$sin2B+$\frac{15}{2}$sinBcosB+1=$\frac{225}{16}$×$\frac{1-cos2B}{2}$+$\frac{15}{4}$sin2B+1=$\frac{15}{4}$sin2B-$\frac{225}{32}$cos2B+$\frac{257}{32}$.
=$\frac{255}{32}$sin(2B-φ)+$\frac{257}{32}$,其中sinφ=$\frac{15}{17}$,cosφ=$\frac{8}{17}$,∴φ=$\frac{π}{2}-A$.
∴AD2=$\frac{255}{32}$sin(2B+A-$\frac{π}{2}$)+$\frac{257}{32}$=-$\frac{255}{32}$cos(2B+A)+$\frac{257}{32}$.
∵0<B<π-A,
∴A<2B+A<2π-A.
∵sinA=$\frac{8}{17}<\frac{1}{2}$,∴A$<\frac{π}{6}$,
∴当2B+A=π时,AD2取得最大值$\frac{255}{32}+\frac{257}{32}$=$\frac{256}{16}$=16,
当2B+A=A或2π-A时,AD2取得最小值-$\frac{255}{32}$×$\frac{15}{17}$+$\frac{257}{32}$=1.
∴1<AD≤4.
故答案为(1,4].
点评 本题考查了正弦定理,余弦定理,三角函数的恒等变换,三角函数的最值,过程较复杂,计算量较大,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 16 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 必要非充分条件 | B. | 充要条件 | ||
| C. | 充分非必要条件 | D. | 既非充分也非必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com