精英家教网 > 高中数学 > 题目详情
16.下列函数中,在其定义域内既是奇函数又是减函数的是(  )
A.y=$\frac{1}{x}$B.y=-x2+1C.y=-e-x-exD.y=sinx

分析 分别利用基本初等函数的函数奇偶性和单调性判断A、B,根据函数奇偶性的定义、导数与函数单调性的关系判断C,由正弦函数的性质判断D.

解答 解:A、y=$\frac{1}{x}$是奇函数,在(-∞,0)、(0,+∞)上是减函数,A不正确;
B.y═-x2+1 在定义域R上是偶函数,不是奇函数,B不正确;
C.y=f(x)=e-x-ex的定义域是R,且f(-x)=ex-e-x=-f(x),则该函数为奇函数,
且y′=-e-x-ex<0,所以该函数在R上是减函数,符合条件,C正确;
D.y=sinx是奇函数,在定义域内不是单调函数,D不正确,
故选C.

点评 本题主要考查函数奇偶性和单调性的判断方法,导数与函数单调性的关系,熟练掌握基本初等函数的奇偶性和单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若实数x,y满足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{4x+3y≤12}\end{array}\right.$,则z=$\frac{x+2y+3}{x+1}$的取值范围是(  )
A.[$\frac{2}{3}$,5]B.[$\frac{3}{2}$,11]C.[$\frac{1}{5}$,$\frac{2}{3}$]D.[$\frac{1}{5}$,$\frac{3}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数 f(x)=$\left\{\begin{array}{l}{-2x(-1≤x≤0)}\\{\sqrt{x}(0<x≤1)}\end{array}\right.$,则下列图象正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.记函数f(x)的导数为f(1)(x),f(1)(x)的导数为f(2)(x),…,f(n-1)(x)的导数为f(n)(x)(n∈N*),若f(x)可进行n次求导,则f(x)均可近似表示为:f(x)≈f(0)+$\frac{{{f^{(1)}}(0)}}{1!}x+\frac{{{f^{(2)}}(0)}}{2!}{x^2}+\frac{{{f^{(3)}}(0)}}{3!}{x^3}$+…+$\frac{{{f^{(n)}}(0)}}{n!}{x^n}$,若取n=4,根据这个结论,则可近似估计cos2≈-$\frac{1}{3}$(用分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知非零向量$\overrightarrow{a}$、$\overrightarrow{b}$满足2|$\overrightarrow{a}$|=3|$\overrightarrow{b}$|,|$\overrightarrow{a}$-2$\overrightarrow{b}$|=|$\overrightarrow{a}$+$\overrightarrow{b}$|,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$=(1,2),$\overrightarrow{a}•\overrightarrow{b}$=-5,$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影是(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{5}$C.-$\sqrt{5}$D.-$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,离心率e=$\frac{1}{2}$,过F2作x轴垂直的直线交椭圆C于A、B两点,△F1AB的面积为3,抛物线E:y2=2px(p>0)以椭圆C的右焦点F2为焦点.
(Ⅰ)求抛物线E的方程;
(Ⅱ)如图,点$P({-\frac{P}{2},t})({t≠0})$为抛物线E的准线上一点,过点P作y轴的垂线交抛物线于点M,连接PO并延长交抛物线于点N,求证:直线MN过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{mx+n}{{x}^{2}+1}$(m,n为常数)是定义在[-1,1]上的奇函数,且f(-1)=-$\frac{1}{2}$.
(1)求函数f(x)的解析式;
(2)解关于x的不等式f(2x-1)<-f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知底角为45°的等腰梯形ABCD,底边BC长为7cm,腰长为2$\sqrt{2}$cm,当一条垂直于底边BC(垂足为F)的直线l从左至右移动(与梯形ABCD有公共点)时,直线l把梯形分成两部分,令BF=x,试写出左边部分的面积y与x的函数解析式,并画出大致图象.

查看答案和解析>>

同步练习册答案