精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\frac{mx+n}{{x}^{2}+1}$(m,n为常数)是定义在[-1,1]上的奇函数,且f(-1)=-$\frac{1}{2}$.
(1)求函数f(x)的解析式;
(2)解关于x的不等式f(2x-1)<-f(x).

分析 (1)由f(0)=$\frac{n}{0+1}$=0,求得n=0,再根据f(-1)=-$\frac{1}{2}$,求得m=1,∴f(x)得解析式.
(2)关于x的不等式即f(2x-1)<-f(x),再根据f(x)在[-1,1]上单调递增,可得不等式组$\left\{\begin{array}{l}{2x-1<-x}\\{-1≤2x-1≤1}\\{-1≤-x≤1}\end{array}\right.$,由此求得x的范围.

解答 解:(1)由于函数f(x)=$\frac{mx+n}{{x}^{2}+1}$(m,n为常数)是定义在[-1,1]上的奇函数,
∴f(0)=$\frac{n}{0+1}$=0,∴n=0,
再根据f(-1)=$\frac{-m}{2}$=-$\frac{1}{2}$,∴m=1,
∴f(x)=$\frac{x}{{x}^{2}+1}$=$\frac{1}{x+\frac{1}{x}}$.
(2)关于x的不等式f(2x-1)<-f(x)=-f(x),
∵f(x)=$\frac{1}{x+\frac{1}{x}}$ 在(0,1]上单调递增,∴f(x)在[-1,1]上单调递增.
故由不等式可得$\left\{\begin{array}{l}{2x-1<-x}\\{-1≤2x-1≤1}\\{-1≤-x≤1}\end{array}\right.$,求得0≤x<$\frac{1}{3}$,
故不等式的解集为{x|0≤x<$\frac{1}{3}$ }.

点评 本题主要考查函数的奇偶性、单调性的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知全集U={1,2,3,4,5,6},A={2,4,5},B={1,3,5},则(∁UA)∩(∁UB)=(  )
A.[6}B.{5}C.{1,2,3,4}D.{5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,在其定义域内既是奇函数又是减函数的是(  )
A.y=$\frac{1}{x}$B.y=-x2+1C.y=-e-x-exD.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合M={x|1<x<5},N={0,2,3,5},则M∩N=(  )
A.{x|2<x<4}B.{0,2,3}C.{2,3}D.{x|2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设min$\left\{{x,y}\right\}=\left\{{\begin{array}{l}{y,x≥y}\\{x,x<y}\end{array}}$,若定义域为R的函数f(x),g(x)满足f(x)+g(x)=$\frac{2x}{{{x^2}+1}}$,则min{f(x),g(x)}的最大值为(  )
A.$\frac{1}{4}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2-2x+1在区间(-1,1)上只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx+ax2+1.
(1)当a=-1时,求函数f(x)的极值;
(2)当a>0时,证明:存在正实数λ,使得|${\frac{1-x}{f(x)-lnx}}$|≤λ恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下列命题中,真命题是①③④
①若${\overrightarrow{a}}$2+${\overrightarrow{b}}$2=0,则$\overrightarrow{a}$=$\overrightarrow{b}$=$\overrightarrow{0}$;                  
②若向量$\overrightarrow{a}$,$\overrightarrow{b}$都是单位向量,则$\overrightarrow{a}$=$\overrightarrow{b}$;
③|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|;                     
④($\overrightarrow{a}$+$\overrightarrow{b}$)+$\overrightarrow{c}$=$\overrightarrow{a}$+($\overrightarrow{b}+\overrightarrow{c}$);
⑤若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•$\overrightarrow{b}$>0,则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角;     
⑥$\overrightarrow{a}$⊥$\overrightarrow{b}$?|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=x+$\frac{lnx}{x}$在x=1处的切线与两坐标轴围成的三角形的面积为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{2}$D.$\frac{5}{4}$

查看答案和解析>>

同步练习册答案