精英家教网 > 高中数学 > 题目详情
设点P(a,b)抛物线y=-2x2上任一点,则
(a-3)2+(b+1)2
-b
的最小值为
 
考点:函数的最值及其几何意义
专题:计算题,数形结合
分析:求出抛物线的焦点坐标与准线方程,根据两点间距离公式与抛物线的定义得
(a-3)2+(b+1)2
-b
=|PA|+dP-x轴=
(a-3)2+(b+1)2
-b
=|PA|+|PF|-
1
8
,利用|PF|+|PA|≥|FA|求得最小值.
解答: 解:由抛物线y=-2x2方程得其焦点F(0,-
1
8
),准线方程为y=
1
8

∵y=-2x2≤0,∴b≤0,
设A(3,-1),

(a-3)2+(b+1)2
-b
=|PA|+dP-x轴
根据抛物线的定义,dP-x轴=|PF|-
1
8

(a-3)2+(b+1)2
-b
=|PA|+|PF|-
1
8

≥|AF|-
1
8
=
25
8
-
1
8
=3.
故答案为:3
点评:本题考查了函数的最值的求法,考查了抛物线的定义,利用数形结合思想将代数式转化为几何中线段的长度是解答本题的关键,运算要细心.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某商场为了了解顾客的购物信息,随机的在商场收集了100位顾客购物的相关数据,整理如下:
一次购物款(单位:元)[0,50)[50,100)[100,150)[150,200)[200,+∞)
顾客人数m2030n10
统计结果显示100位顾客中购物款不低于100元的顾客占60%,据统计该商场每日大约有5000名顾客,为了增加商场销售额度,对一次性购物不低于100元的顾客发放纪念品(每人一件).(注:视频率为概率)
(Ⅰ)试确定m,n的值,并估计该商场每日应准备纪念品的数量;
(Ⅱ)为了迎接店庆,商场进行让利活动,一次购物款200元及以上的一次返利30元;一次性购物款小于200元的按购物款的百分比返利,具体见下表:
一次购物款(单位:元)[0,50)[50,100)[100,150)[150,200)
返利百分比06%8%10%
请估计该商场日均让利多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

设某总体是由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某个部件由三个元件如图方式连接而成,元件A或元件B正常工作,且元件C正常工作,则部件正常工作.若3个元件的次品率均为
1
3
,且各个元件相互独立,那么该部件的次品率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1有相同的焦点;
②(lnx)′=
1
xlge

③(
u
v
)′=
uv/-vu/
v2

④若双曲线
x2
4
-
y2
2
=1的渐近线方程为y=±
1
2
x;
⑤对于实数x,y,条件p:x+y≠8,条件q:x≠2或y≠6,那么p是q的充分不必要条件.
其中是真命题的有:
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙M经过双曲线S:
x2
9
-
y2
16
=1的一个顶点和一个焦点,圆心M在双曲线上S上,则圆心M到双曲线S的中心的距离为(  )
A、
13
4
7
3
B、
15
4
8
3
C、
13
3
D、
16
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、一个命题的逆命题为真,则它的逆否命题一定为真
B、若a+b>3,则a>1或b>2
C、命题“所有的矩形都是正方形”的否命题和命题的否定均为真命题
D、“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:

在5×5的棋盘中,放入3颗黑子和2颗白子,它们均不在同一行且不在同一列,则不同的排列方法种数为(  )
A、150B、200
C、600D、1200

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P是圆x2+(y+1)2=
3
4
上的动点,过点P作抛物线x2=4y的两条切线,切点为A、B,求
PA
PB
的最小值及取得最小值时P点的坐标.

查看答案和解析>>

同步练习册答案