精英家教网 > 高中数学 > 题目详情
7.若$\overrightarrow{a}$和$\overrightarrow{b}$是两个互相垂直的单位向量,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{5}$.

分析 计算($\overrightarrow{a}+2\overrightarrow{b}$)2,然后开方即可.

解答 解:∵$\overrightarrow{a}$和$\overrightarrow{b}$是两个互相垂直的单位向量,
∴${\overrightarrow{a}}^{2}={\overrightarrow{b}}^{2}=1$,$\overrightarrow{a}•\overrightarrow{b}=0$.
∴($\overrightarrow{a}+2\overrightarrow{b}$)2=${\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow{b}+4{\overrightarrow{b}}^{2}$=5,
∴|$\overrightarrow{a}+2\overrightarrow{b}$|=$\sqrt{5}$.
故答案为:$\sqrt{5}$.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知抛物线C:y2=2px(p>0)的焦点坐标为(1,0),则p=2;若抛物线C上一点A到其准线的距离与到原点距离相等,则A点到x轴的距离为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知定点F(0,1),动点M(a,-1)(a∈R),线段FM的中垂线l与直线x=a交于点P.
(1)求动点P的轨迹Г的方程;
(2)当△PFM为正三角形时,过点P作直线l的垂线,交轨迹Г于P,Q两点,求证:点F在以线段PQ为直径的圆内.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.阅读如图的程序框图,运行相应的程序,则输出S的值为(  )
A.1B.$\frac{4}{3}$C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设z满足i(1+z)=2+i,则|z|=(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某农场用甲、乙两种不同的方式培育了一批甘蔗苗,培育一段时间后,同时随机抽取两种方式培育的甘蔗苗各15株,测量其高度,得到如图的茎叶图(单位:cm)
(Ⅰ)依茎叶图判断用哪种方式培育的甘蔗苗平均高度值较大?
(Ⅱ)如果规定甘蔗苗高度不低于85cm的为生长优秀,请填写下面的2×2列联表,并判断能否有99%的把握认为甘蔗苗高度与培育方式有关”
甲方式乙方式合计
优秀
不优秀
合计
下面临界值表仅供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{n({ad-cd)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设曲线y=f(x)与曲线y=x2+1(x<0)关于y=x对称,则f(x)的定义域为(  )
A.(0,+∞)B.(1,+∞)C.(-∞,0)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设实数x,y满足约束条件$\left\{{\begin{array}{l}{3x-2y+4≥0}\\{x+y-4≤0}\\{x-ay-2≤0}\end{array}}\right.$,已知z=2x+y的最大值是7,最小值是-26,则实数a的值为(  )
A.6B.-6C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c且3b=2$\sqrt{3}$c.
(1)若B=2C,求sinB的值;
(2)若c=3,△ABC的面积为3$\sqrt{2}$,求a.

查看答案和解析>>

同步练习册答案