精英家教网 > 高中数学 > 题目详情
2.设z满足i(1+z)=2+i,则|z|=(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.2D.1

分析 根据复数的四则运算求出z,然后利用复数的模长公式进行求解即可.

解答 解:由i(1+z)=2+i,得1+z=$\frac{2+i}{i}$=1-2i,
则z=-2i,
则|z|=2,
故选:C

点评 本题主要考查复数模长的计算,根据复数的四则运算求出复数z是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图为某几何体的三视图,则该几何体的表面积为(  )
A.28B.30C.$18+4\sqrt{2}$D.$18+6\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}中,已知d=2,a3是a2与a5的等比中项.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n}^{2}+1}{2}$,记Tn=-b1+b2-b3+…+(-1)nbn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平行四边形ABCD中,AB=3,AD=2,∠BAD=60°,$\overrightarrow{DE}$=t$\overrightarrow{DC}$(0≤t≤1),且$\overrightarrow{AE}$•$\overrightarrow{BD}$=-1,则t=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在边长为1的正方形OABC内取一点M,则点M恰好落在阴影内部的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若$\overrightarrow{a}$和$\overrightarrow{b}$是两个互相垂直的单位向量,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.针对当前市场的低迷,企业在不断开拓市场的同时,也在不断的加强产品质量的管理.我市某企业从生产的某种产品中抽取100件,测量这些产品的质量指标值,由测量结果得到如图所示的频率分布直方图,质量指标值落在区间[55,65),[65,75),[75,85]内的频率之比为4:2:1.
(1)求这些产品质量指标值落在区间[75,85]内的频率;
(2)用分层抽样的方法在区间[45,75)内抽取一个容量为6的样本,将该样本看成一个总体,从中任意抽取2件产品,求这2件产品都在区间[45,65)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a<0,则x0满足关于x的方程ax=b的充要条件是(  )
A.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax${\;}_{0}^{2}$-bx0B.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax${\;}_{0}^{2}$-bx0
C.?x∈R,$\frac{1}{2}$ax2-bx≥$\frac{1}{2}$ax${\;}_{0}^{2}$-bx0D.?x∈R,$\frac{1}{2}$ax2-bx≤$\frac{1}{2}$ax${\;}_{0}^{2}$-bx0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知Sn为等差数列{an}的前n项和,a1=-1,S4=14,则a2等于(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案