精英家教网 > 高中数学 > 题目详情
10.在平行四边形ABCD中,AB=3,AD=2,∠BAD=60°,$\overrightarrow{DE}$=t$\overrightarrow{DC}$(0≤t≤1),且$\overrightarrow{AE}$•$\overrightarrow{BD}$=-1,则t=$\frac{1}{3}$.

分析 用$\overrightarrow{AB},\overrightarrow{AD}$表示出$\overrightarrow{AE}$,$\overrightarrow{BD}$,利用数量积的运算性质计算.

解答 解:${\overrightarrow{AB}}^{2}$=9,${\overrightarrow{AD}}^{2}$=4,$\overrightarrow{AB}•\overrightarrow{AD}$=3×2×cos60°=3.
∵$\overrightarrow{AE}=\overrightarrow{AD}+\overrightarrow{DE}$=$\overrightarrow{AD}+t\overrightarrow{DC}$=$\overrightarrow{AD}+t\overrightarrow{AB}$,$\overrightarrow{BD}=\overrightarrow{AD}-\overrightarrow{AB}$.
∴$\overrightarrow{AE}•\overrightarrow{BD}$=($\overrightarrow{AD}+t\overrightarrow{AB}$)•($\overrightarrow{AD}-\overrightarrow{AB}$)=${\overrightarrow{AD}}^{2}$-t${\overrightarrow{AB}}^{2}$+(t-1)$\overrightarrow{AB}•\overrightarrow{AD}$=4-9t+3(t-1)=-6t+1.
∴-6t+1=-1,解得t=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查了平面向量的数量积运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,汽车前灯反射镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反射镜的轴垂直,灯泡位于抛物线的焦点F处.已知灯口直径是24cm,灯深10cm,求灯泡与反射镜的顶点O的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边分别为a,b,c,且asinB+$\sqrt{3}$acosB=$\sqrt{3}$c.
(Ⅰ)求角A的大小;
(Ⅱ)已知函数f(x)=λcos2(ωx+$\frac{A}{2}$)-3(λ>0,ω>0)的最大值为2,将y=f(x)的图象的纵坐标不变,横坐标伸长到原来的$\frac{3}{2}$倍后便得到函数y=g(x)的图象,若函数y=g(x)的最小正周期为π.当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知定点F(0,1),动点M(a,-1)(a∈R),线段FM的中垂线l与直线x=a交于点P.
(1)求动点P的轨迹Г的方程;
(2)当△PFM为正三角形时,过点P作直线l的垂线,交轨迹Г于P,Q两点,求证:点F在以线段PQ为直径的圆内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C的对边分别为a,b,c,且满足2bsin(C+$\frac{π}{6}$)=a+c.
(Ⅰ)求角B的大小;
(Ⅱ)若点M为BC中点,且AM=AC=2,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.阅读如图的程序框图,运行相应的程序,则输出S的值为(  )
A.1B.$\frac{4}{3}$C.$\frac{5}{4}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设z满足i(1+z)=2+i,则|z|=(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设曲线y=f(x)与曲线y=x2+1(x<0)关于y=x对称,则f(x)的定义域为(  )
A.(0,+∞)B.(1,+∞)C.(-∞,0)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需消耗一级子棉2吨、二级子棉1吨;生产乙种棉纱1吨需消耗一级子棉1吨、二级子棉2吨,每吨甲种、乙种棉纱的利润分别是900元和600元,工厂在生产中要求消耗一级子棉不超过300吨、二级子棉不超过270吨,且甲种棉纱的产量不能超过乙种棉纱的产量60吨.
(Ⅰ)请列出符合题意的不等式组及目标函数;
(Ⅱ)甲、乙两种棉纱应各生产多少吨,才能获得最大利润?并求出最大利润.

查看答案和解析>>

同步练习册答案