精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
alnx
x+1
+
b
x
,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.
(Ⅰ)求a、b的值;
(Ⅱ)证明:当x>0,且x≠1时,f(x)>
lnx
x-1
(I)f′(x)=
a(
x+1
x
- lnx)
(x+1)2
-
b
x2

由于直线x+2y-3=0的斜率为-
1
2
,且过点(1,1)
所以
b=1
a
2
-b
=-
1
2

解得a=1,b=1
(II)由(I)知f(x)=
lnx
x+1
+
1
x

所以f(x)-
lnx
x-1
=
1
1-x2
(2lnx-
x2-1
x
)

考虑函数h(x)=2lnx-
x2-1
x
(x>0)

h′(x)=
2
x
-
2x2-(x2-1)
x2
=-
(x-1)2
x2

所以当x≠1时,h′(x)<0而h(1)=0,
当x∈(0,1)时,h(x)>0可得
1
1-x2
h(x)>0

x∈(1,+∞)时,h(x)<0,可得
1
1-x2
h(x)>0

从而当x>0且x≠1时,
f(x)-
lnx
x-1
>0即f(x)>
lnx
x-1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案