精英家教网 > 高中数学 > 题目详情
4.己知数列{an}是等比数列,b1009是1和3的等差中项,则b1b2017=(  )
A.16B.8C.2D.4

分析 由等差中项求出b1009=2,由此利用等比数列通项公式能求出b1b2017=${{b}_{1009}}^{2}$的值.

解答 解:∵数列{an}是等比数列,b1009是1和3的等差中项,
∴b1009=$\frac{1+3}{2}$=2,
b1b2017=${{b}_{1009}}^{2}$=4.
故选:D.

点评 本题考查等比数列的两项积的求法,是基础题,解题时要认真审题,注意等比数列、等差中项的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设[x]表示不小于实数x的最小整数,如[2.6]=3,[-3.5]=-3.已知函数f(x)=[x]2-2[x],若函数F(x)=f(x)-k(x-2)+2在(-1,4]上有2个零点,则k的取值范围是(  )
A.$[{-\frac{5}{2},-1})∪[2,5)$B.$[{-1,-\frac{2}{3}})∪[5,10)$C.$({-\frac{4}{3},-1}]∪[5,10)$D.$[{-\frac{4}{3},-1}]∪[5,10)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若一个圆锥的母线与底面所成的角为$\frac{π}{6}$,体积为125π,则此圆锥的高为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,平行四边形ABCD的两条对角线相交于点O,点E、F分别在边AB、AD上,$\overrightarrow{AE}$=$\frac{5}{7}$$\overrightarrow{AB}$,$\overrightarrow{AF}$=$\frac{1}{4}$$\overrightarrow{AD}$,直线EF交于AC于点K,$\overrightarrow{AK}$=λ$\overrightarrow{AO}$,则λ等于(  )
A.$\frac{8}{27}$B.$\frac{1}{3}$C.$\frac{10}{27}$D.$\frac{11}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知复数z=(3a+2i)(b-i)的实部为4,其中a、b为正实数,则2a+b的最小值为(  )
A.2B.4C.$\frac{2\sqrt{3}}{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.以模型y=cekx(e为自然对数的底)去拟合一组数据时,为了求出回归直线方程,设z=lny,其变换后得到线性回归方程为z=0.4x+2,则c=e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.“a≥3${∫}_{0}^{\frac{π}{6}}$cosθdθ”是“直线l:2ax-y+2a2=0(a>0)与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1的右支无交点”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z满足(3-4i)z=1+2i(i为虚数单位),则z的共轭复数是(  )
A.-$\frac{1}{5}-\frac{2}{5}$iB.$-\frac{1}{5}+\frac{2}{5}i$C.$\frac{1}{5}+\frac{2}{5}$iD.$\frac{1}{5}-\frac{2}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设向量$\overrightarrow{AB}=(1,4),\overrightarrow{BC}=(m,-1)$,且$\overrightarrow{AB}⊥\overrightarrow{BC}$,则实数m的值为(  )
A.-10B.-13C.-7D.4

查看答案和解析>>

同步练习册答案