分析 (Ⅰ)由 MC与平面ABCD所成角均为θ,得∠MAB=∠MCB=θ.BA=BC.四边形ABCD为正方形,即可得AC⊥面BDM,即AC⊥OM.
(Ⅱ) θ=$\frac{π}{4}$时,则有AB=BC=MB,延长D1M,DB交于点点H,过点O作ON⊥D1H于点N,连接AN,则∠ANO为二面角A-D1M-B的平面角,利用平面几何知识即可求解.
解答
解:(Ⅰ)证明:∵MB⊥面ABCD,直线MA,MC与平面ABCD所成角均为θ,∴∠MAB=∠MCB=θ.
故△MBA≌MBC,BA=BC.
∴四边形ABCD为正方形,AC⊥DB,又AC⊥MB,DB∩MB=B
∴AC⊥面BDM,即AC⊥OM.
(Ⅱ) θ=$\frac{π}{4}$时,则有AB=BC=MB,延长D1M,DB交于点点H,
过点O作ON⊥D1H于点N,连接AN,则∠ANO为二面角A-D1M-B的平面角.
设AB=1,由△D1DH∽△ONH易得ON=$\frac{\sqrt{6}}{2}$,AO=$\frac{\sqrt{2}}{2}$,
tan∠ANO=$\frac{AO}{ON}=\frac{\sqrt{3}}{3}$,∴∠ANO=30°
二面角A-D1M-B1的余弦值为$\frac{\sqrt{3}}{3}$.
点评 本题考查了空间线线垂直的判定,几何法求二面角,考查了转化思想,属于中档题,
科目:高中数学 来源: 题型:解答题
| 日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 天气 | 晴 | 霾 | 霾 | 阴 | 霾 | 霾 | 阴 | 霾 | 霾 | 霾 | 阴 | 晴 | 霾 | 霾 | 霾 |
| 日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 天气 | 霾 | 霾 | 霾 | 阴 | 晴 | 霾 | 霾 | 晴 | 霾 | 晴 | 霾 | 霾 | 霾 | 晴 | 霾 |
| 不限行 | 限行 | 总计 | |
| 没有雾霾 | a | ||
| 有雾霾 | b | ||
| 总计 | 30 | 30 | 60 |
| P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S2016=2016,a1008>a1009 | B. | S2016=-2016,a1008>a1009 | ||
| C. | S2016=2016,a1008<a1009 | D. | S2016=-2016,a1008<a1009 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com