7£®Èçͼ£¬ÉèÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄ×óÓÒ½¹µãΪF1£¬F2£¬É϶¥µãΪA£¬µãBºÍµãF2¹ØÓÚF1¶Ô³Æ£¬ÇÒAB¡ÍAF2£¬A£¬B£¬F2ÈýµãÈ·¶¨µÄÔ²MÇ¡ºÃÓëÖ±Ïß$x-\sqrt{3}y-3=0$ÏàÇУ®
£¨1£©ÇóÍÖÔ²µÄ·½³ÌC£»
£¨2£©¹ýF1×÷Ò»ÌõÓëÁ½×ø±êÖá¶¼²»´¹Ö±µÄÖ±Ïßl½»ÍÖÔ²ÓÚP£¬QÁãµã£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãN£¬Ê¹µÃNF1ǡΪ¡÷PNQµÄÄÚ½ÇÆ½·ÖÏߣ¬Èô´æÔÚ£¬Çó³öµãNµÄ×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉÖª£ºF1£¨-c£¬0£©£¬MµÄÔ²ÐÄ×ø±êΪF1£¨-c£¬0£©£¬°ë¾¶Îª2c£¬¸ù¾Ýµãµ½Ö±ÏߵľàÀ빫ʽ$\frac{Ø­-c-3Ø­}{\sqrt{1+£¨\sqrt{3}£©^{2}}}$=2c£¬¼´¿ÉÇóµÃcµÄÖµ£¬ÓÉÉäÓ°¶¨Àí¿ÉÖª£ºb2=BO2=BO•OF2=2c•c=3£¬¼´¿ÉÇóµÃb2=3£¬¸ù¾ÝÍÖÔ²µÄÐÔÖʼ´¿ÉÇóµÃaµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨2£©ÓÉÌâÒâ¿ÉÖªÉèÖ±ÏßlµÄ·½³ÌΪy=k£¨x+1£©£¨k¡Ù0£©£¬½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àíx1+x2=-$\frac{8{k}^{2}}{3+4{k}^{2}}$£¬x1•x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$£¬ÓÉNF1ǡΪ¡÷PNQµÄÄÚ½ÇÆ½·ÖÏߣ¬¿ÉÖªkNP=-kMQ£¬$\frac{{y}_{1}}{{x}_{1}-{x}_{0}}$=-$\frac{{y}_{2}}{{x}_{2}-{x}_{0}}$£¬ÕûÀíÇóµÃx0=$\frac{{x}_{1}+{x}_{2}+2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}+2}$=$\frac{-\frac{8{k}^{2}}{3+4{k}^{2}}+\frac{8{k}^{2}-24}{3+4{k}^{2}}}{2-\frac{8{k}^{2}}{3+4{k}^{2}}}$=-4£¬¼´¿ÉÇóµÃµãNµÄ×ø±ê£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºF1£¨-c£¬0£©£¬B£¨-3c£¬0£©£¬MµÄÔ²ÐÄ×ø±êΪF1£¨-c£¬0£©£¬°ë¾¶Îª2c£¬
ÓÉÖ±Ïß$x-\sqrt{3}y-3=0$ÓëÔ²MÏàÇУ¬$\frac{Ø­-c-3Ø­}{\sqrt{1+£¨\sqrt{3}£©^{2}}}$=2c£¬½âµÃ£ºc=1£¬
ÓÉAB¡ÍAF2£¬AO¡ÍBF1£¬
ÓÉÉäÓ°¶¨Àí¿ÉÖª£ºb2=BO2=BO•OF2=2c•c=3£¬¼´b2=3£¬
¡àa2=b2+c2=4£¬
ÍÖÔ²µÄ·½³ÌC£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£»
£¨2£©¼ÙÉè´æÔÚÂú×ãÌõ¼þµÄµãN£¨x0£¬0£©£¬ÓÉÌâÒâ¿ÉÖª£ºÖ±ÏßlµÄ·½³ÌΪy=k£¨x+1£©£¨k¡Ù0£©£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x+1£©}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬
¡à3x2+4k2£¨x+1£©2=12£¬
¡à£¨3+4k2£©x2+8k2x+4k2-12=0£¬
¡àx1+x2=-$\frac{8{k}^{2}}{3+4{k}^{2}}$£¬x1•x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$£¬
¡ßNF1ǡΪ¡÷PNQµÄÄÚ½ÇÆ½·ÖÏߣ¬
¡àkNP=-kMQ£¬$\frac{{y}_{1}}{{x}_{1}-{x}_{0}}$=-$\frac{{y}_{2}}{{x}_{2}-{x}_{0}}$£¬
¡à$\frac{k£¨{x}_{1}+1£©}{{x}_{1}-{x}_{0}}$=-$\frac{k£¨{x}_{2}+1£©}{{x}_{2}-{x}_{1}}$£¬
¡à£¨x1+1£©£¨x1-x0£©=-£¨x2+1£©£¨x2-x0£©£¬
¡àx0=$\frac{{x}_{1}+{x}_{2}+2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}+2}$=$\frac{-\frac{8{k}^{2}}{3+4{k}^{2}}+\frac{8{k}^{2}-24}{3+4{k}^{2}}}{2-\frac{8{k}^{2}}{3+4{k}^{2}}}$=-4£¬
¡à´æÔÚµãNµÄ×ø±êΪ£¨-4£¬0£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ£¬Î¤´ï¶¨Àí£¬Ð±Âʹ«Ê½¼°ÉäÓ°¶¨ÀíµÄ×ÛºÏÓ¦Óã¬×ÛºÏÐÔÇ¿£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=2|x-1|+|x-3|
£¨1£©½«º¯Êýf£¨x£©¸Äд³É·Ö¶Îº¯ÊýµÄÐÎʽ£»
£¨2£©»­³ö¸Ãº¯ÊýµÄͼÏó£»
£¨3£©¸ù¾ÝͼÏóÖ¸³öº¯ÊýµÄµ¥µ÷Çø¼ä²¢ËµÃ÷µ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®£¨1£©¼ÆË㣺27${\;}^{\frac{2}{3}}$-$\sqrt{£¨3-¦Ð£©^{2}}$+lg$\frac{1}{5}$-lg20
£¨2£©ÒÑÖª½Ç¦ÁµÄ¶¥µãÔÚ×ø±êÔ­µã£¬Ê¼±ßÓëxÖá·Ç¸º°ëÖáÖØºÏ£¬µãP£¨-3£¬m£©£¨m£¾0£©ÊǽǦÁÖÕ±ßÉÏÒ»µã£¬ÇÒcos¦Á=-$\frac{3}{5}$£¬Çótan¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èç¹ûʵÊýx£¬yÂú×ã¹ØÏµ$\left\{\begin{array}{l}x-y+1¡Ý0\\ x+y-2¡Ü0\\ x¡Ý0\\ y¡Ý0\end{array}\right.$£¬Ôò$z=\frac{2x+y-7}{x-3}$µÄȡֵ·¶Î§Îª[-$\frac{9}{5}$£¬3]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Å×ÎïÏßy=$\frac{1}{8}{x^2}$µÄ×¼Ïß·½³ÌÊÇ£¨¡¡¡¡£©
A£®x=-2B£®x=-4C£®y=-2D£®y=-4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªº¯Êý$f£¨x£©=-\frac{1}{x}-2$
£¨1£©ÇóÖ¤£ºf£¨x£©ÔÚÇø¼ä£¨-¡Þ£¬0£©ÉÏÊǵ¥µ÷Ôöº¯Êý£®
£¨2£©ÇóÖ¤£ºf£¨x£©ÔÚ¶¨ÒåÓòÄÚ²»Êǵ¥µ÷Ôöº¯Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªµÈ±ÈÊýÁÐ{an}Âú×ãa7=$\frac{1}{4}$£¬a3a5=4£¨a4-1£©£¬Ôòa2=£¨¡¡¡¡£©
A£®2B£®1C£®8D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªiÊÇÐéÊýµ¥Î»£¬Ôò$\frac{{{i^{2015}}}}{1+i}$£¨¡¡¡¡£©
A£®$\frac{1-i}{2}$B£®$\frac{1+i}{2}$C£®$\frac{-1-i}{2}$D£®$\frac{-1+i}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÓÐһʢÂúË®µÄÔ²ÖùÐÎÈÝÆ÷£¬ÄÚ±Úµ×Ãæ°ë¾¶Îª5£¬¸ßΪ2£®½«Ò»¸ö°ë¾¶Îª3µÄ²£Á§Ð¡Çò»ºÂý½þûÓëË®ÖУ®
£¨1£©ÇóÔ²ÖùÌå»ý£»
£¨2£©ÇóÒç³öË®µÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸