精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是正方形, 底面 分别是的中点.

(1)在图中画出过点的平面,使得平面(须说明画法,并给予证明);

(2)若过点的平面平面且截四棱锥所得截面的面积为,求四棱锥的体积.

【答案】(1)见解析;(2).

【解析】试题分析:(1)分别取的中点,连接,可证 ,进而根据面面平行得性质可得结果;(2)设,则 先证梯形为直角梯形,再根据面积求得,进而可得结果.

试题解析:(1)如图所示,分别取的中点,连接,因为 ,所以,即四点共面,则平面为所求平面,因为 ,所以.

同理可得: ,且,所以.

(2)设,则 ,由(1)知截面面积为梯形的面积,

在平面的射影,且,∴

同理可证: ,所以梯形为直角梯形.

中, ,∴,∴,∴

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】王明参加某卫视的闯关活动,该活动共3关.设他通过第一关的概率为0.8,通过第二、第三关的概率分别为pq,其中,并且是否通过不同关卡相互独立.记ξ为他通过的关卡数,其分布列为:

ξ

0

1

2

3

P

0.048

a

b

0.192

(Ⅰ)求王明至少通过1个关卡的概率;

(Ⅱ)求pq的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5组,制成如图所示频率分直方图.

(1) 求图中的值;

(2) 已知满意度评分值在[90,100]内的男生数与女生数的比为2:1,若在满意度评分值为[90,100]的人中随机抽取4人进行座谈,设其中的女生人数为随机变量,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形中, ,点中点,沿折起至,如下图所示,点在面的射影落在上.

(Ⅰ)求证:

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:

直径/

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率);

评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级.

(2)将直径小于等于或直径大于的零件认为是次品.

①从设备的生产流水线上随意抽取2件零件,计算其中次品个数的数学期望

②从样本中随意抽取2件零件,计算其中次品个数的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: (a>b>0)的离心率为 ,直线y=x+2过椭圆C的左焦点F1

(1)求椭圆C的标准方程;

(2)设过点A(0,﹣1)的直线l与椭圆交于不同两点M、N,当△MON的面积为 时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在[﹣2,2]上的奇函数f(x)=x5+x3+b
(1)求b值;
(2)若f(x)在[0,2]上单调递增,且f(m)+f(m﹣1)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为平行四边形,其中,等边所在平面与平面垂直.

(Ⅰ)点在棱上,且的重心,求证:平面

)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形中,相交于点.

(I)求证:平面

(II)当直线与平面所成角的大小为时,求二面角的余弦值.

查看答案和解析>>

同步练习册答案