【题目】设定义在[﹣2,2]上的奇函数f(x)=x5+x3+b
(1)求b值;
(2)若f(x)在[0,2]上单调递增,且f(m)+f(m﹣1)>0,求实数m的取值范围.
【答案】
(1)解:定义在[﹣2,2]上的奇函数f(x)=x5+x3+b,由于满足f(0)=0,
可得b=0
(2)解:若f(x)在[0,2]上单调递增,且 f(m)+f(m﹣1)>0,
可得f(m)>﹣f(m﹣1)=f(1﹣m),故有
,
解得
<m≤2,故实数m的范围为(
,2]
【解析】(1)根据奇函数的性质可得f(0)=0,从而求得b的值.(2)由条件可得f(m)>﹣f(m﹣1)=f(1﹣m),再由
,求得m的范围.
【考点精析】通过灵活运用函数单调性的性质和函数奇偶性的性质,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集;在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇即可以解答此题.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是正方形,
底面
,
,
分别是
的中点.
(1)在图中画出过点
的平面
,使得
平面
(须说明画法,并给予证明);
(2)若过点
的平面
平面
且截四棱锥
所得截面的面积为
,求四棱锥
的体积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+
x2+mx在x=1处有极小值,
g(x)=f(x)﹣
x3﹣
x2+x﹣alnx.
(1)求函数f(x)的单调区间;
(2)是否存在实数a,对任意的x1、x2∈(0,+∞),且x1≠x2,有
恒成立?若存在,求出a的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆
过点A(2,1),离心率为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线
与椭圆相交于B,C两点(异于点A),线段BC被y轴平分,且
,求直线l的方程.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
平面直角坐标系中,直线
的参数方程为
(
为参数),以原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)写出直线
的极坐标方程与曲线
的直角坐标方程;
(2)已知与直线
平行的直线
过点
,且与曲线
交于
两点,试求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
是椭圆
:
的左,右焦点.
(1)当
时,若
是椭圆
上在第一象限内的一点,且
,求点
的坐标;
(2)当椭圆
的焦点在
轴上且焦距为2时,若直线
:
与椭圆
相交于
两点,且
,求证:
的面积为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com