分析 (1)由题意可得A=$\sqrt{3}$,周期T=$\frac{2π}{ω}$=4(6-2),解得ω代入点的坐标可得φ值,可得解析式;
(2)由x∈[0,4]可得$\frac{π}{8}$x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{3π}{4}$],由三角函数的最值可得.
解答 解:(1)由题意可得A=$\sqrt{3}$,周期T=$\frac{2π}{ω}$=4(6-2),
解得ω=$\frac{π}{8}$,故y=$\sqrt{3}$sin($\frac{π}{8}$x+φ),
代入点(6,0)可得0=$\sqrt{3}$sin($\frac{3π}{4}$+φ),
∴$\frac{3π}{4}$+φ=kπ,k∈Z,结合0<φ<2π可得φ=$\frac{5π}{4}$,
∴函数的解析式为y=$\sqrt{3}$sin($\frac{π}{8}$x+$\frac{5π}{4}$)=-$\sqrt{3}$sin($\frac{π}{8}$x+$\frac{π}{4}$);
(2)∵x∈[0,4],∴$\frac{π}{8}$x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{3π}{4}$],
∴当$\frac{π}{8}$x+$\frac{π}{4}$=$\frac{π}{4}$或$\frac{3π}{4}$,即x=0或4时,y取最大值-$\frac{\sqrt{6}}{2}$,
当$\frac{π}{8}$x+$\frac{π}{4}$=$\frac{π}{2}$,即x=2时,y取最小值-$\sqrt{3}$.
点评 本题考查三角函数的图象和解析式,涉及三角函数的最值,属中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 96种 | B. | 36种 | C. | 24种 | D. | 48种 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{16}-\frac{y^2}{15}=1$ | B. | $\frac{x^2}{16}-\frac{y^2}{12}=1$ | C. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ | D. | $\frac{x^2}{16}-\frac{y^2}{3}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 1 | C. | 0 | D. | $\frac{3-\sqrt{33}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com