精英家教网 > 高中数学 > 题目详情
1.设函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,f(x+3)=f(x)+1,则f(2)=$\frac{1}{2}$.

分析 利用函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,求出f(-1)=-$\frac{1}{2}$,根据f(x+3)=f(x)+1,可得f(2)=f(-1)+1=$\frac{1}{2}$.

解答 解:∵函数f(x)(x∈R)为奇函数,f(1)=$\frac{1}{2}$,
∴f(-1)=-$\frac{1}{2}$,
∵f(x+3)=f(x)+1,
∴f(2)=f(-1)+1=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查函数奇偶性的定义,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设f(x)是定义在R上的奇函数,当x<0时,f(x)=-1-log2(-x).
(1)求f(x)的解析式;
(2)设g(x)=2f(2x+3)-f(2x+1),对任意x∈R,t∈[-2,2],不等式g(x)≥mt+m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合M是同时满足如下条件的函数f(x),x∈D的全体:
①f(x)在D上单调递增或单调递减:
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域是[a,b].
(1)求函数y=-x3符合条件②的区间[a,b];
(2)判断函数y=3x-1gx是不是集合M的元素?若是,请求出区间[a.b];若不是,请说明理由;
(3)若函数y=k+$\sqrt{x+2}$是集合M的元素,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)=\left\{{\begin{array}{l}{-{x^2}+m}&x∈[-1,2]\\{x-3}&x∈(2,5]\end{array}}\right.$,若函数f(x)在[-1,2]上的最小值为-1.
(1)求实数m的值;
(2)在如图给定的直角坐标系内画出函数f(x)的草图;(不用列表描点)
(3)根据图象写出f(x)的单调递增区间和单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在下列各题中,对应法则f是否从集合A到集合B的映射?为什么?
(1)A={30°,45°,60°},B={非负实数},对应法则f:“求正弦值”;
(2)A={1,2,3,4,5,6,7,8,9,10,11,12},B={28,29,30,31},对应法则f:“非闰年时,月份对应的这个月的天数”.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.判断方程x2+y2-4x+2y-1=0是否表示圆,如果是,指出圆心和半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列函数的值域:
(1)y=$\frac{3x+2}{x-2}$;
(2)y=$\frac{3{x}^{2}+3x+1}{{x}^{2}+x-1}$;
(3)y=x+$\sqrt{2x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定积分${∫}_{0}^{1}$$\frac{1}{1+x}$dx的值为ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.把下列直角坐标方程化成极坐标方程.
(1)x2+y2=16
(2)xy=a;
(3)x2+y2+2y=0;
(4)x2-y2=a2

查看答案和解析>>

同步练习册答案