精英家教网 > 高中数学 > 题目详情
16.已知数列{an}的首项a1=1,且满足an+1-an≤2n,an-an+2≤-3×2n,则a2017=22017-1.

分析 an+1-an≤2n,可得an+2-an+1≤2n+1,又an-an+2≤-3×2n,可得an+1-an≥2n,于是an+1-an=2n,再利用“累加求和”方法即可得出.

解答 解:∵an+1-an≤2n
∴an+2-an+1≤2n+1,又an-an+2≤-3×2n,∴an+1-an≥2n
∴2n≤an+1-an≤2n
∴an+1-an=2n
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-1+…+2+1
=$\frac{{2}^{n}-1}{2-1}$=2n-1.
∴a2017=22017-1.
故答案为:22017-1

点评 本题考查了递推关系、不等式的性质、“累加求和”方法、等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设集合A={x|-a<x<a},其中a>0,命题p:1∈A,命题q:2∈A,若p∨q为真命题,p∧q为假命题,则a的取值范围是(  )
A.0<a<1或a>2B.0<a<1或a≥2C.1<a≤2D.1≤a≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某省组织了一次高考模拟考试,该省教育部门抽取了1000名考生的数学考试成绩,并绘制成频率分布直方图如图所示.
(Ⅰ)求样本中数学成绩在95分以上(含95分)的学生人数;
(Ⅱ)已知本次模拟考试全省考生的数学成绩X~N(μ,σ2),其中μ近似为样本的平均数,σ2近似为样本方差,试估计该省的所有考生中数学成绩介于100~138.2分的概率;
(Ⅲ)以频率估计概率,若从该省所有考生中随机抽取4人,记这4人中成绩在[105,125)内的人数为X,求X的分布列及数学期望.
参考数据:$\sqrt{356}$≈18.9,$\sqrt{366}$≈19.1,$\sqrt{376}$≈19.4.
若Z∽N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.9826,P(μ-2σ<Z<μ+2σ)=0.9544,P(μ-3σ<Z<μ+3σ)=0.9976.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足$\left\{\begin{array}{l}{|x-y|≤1}\\{|x+y|≤3}\end{array}\right.$,则|3x+y|的最大值为(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在正项等比数列{an}中,a1008a1010=$\frac{1}{100}$,则lga1+lga2+…+lga2017=(  )
A.-2016B.-2017C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中满足在(-∞,0)上单调递减的偶函数是(  )
A.$y={({\frac{1}{2}})^{|x|}}$B.y=|log2(-x)|C.$y={x^{\frac{2}{3}}}$D.y=sin|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p,q,“¬p为假”是“p∨q为真”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若($\sqrt{x}$+$\frac{2}{{x}^{2}}$)n展开式中只有第六项的二项式系数最大,则展开式中的常数项是(  )
A.90B.45C.120D.180

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x2-4x+a+3:
(1)若函数y=f(x)在[-1,1]上存在零点,求实数a的取值范围;
(2)设函数g(x)=x+b,当a=3时,若对任意的x1∈[1,4],总存在x2∈[5,8],使得g(x1)=f(x2),求实数b的取值范围.

查看答案和解析>>

同步练习册答案