精英家教网 > 高中数学 > 题目详情
16.设函数f(x)=ex(sinx-cosx)(0≤x≤2016π),则函数f(x)的各极小值之和为(  )
A.$-\frac{{{e^{2π}}(1-{e^{2016π}})}}{{1-{e^{2π}}}}$B.$-\frac{{{e^{2π}}(1-{e^{1008π}})}}{{1-{e^π}}}$
C.$-\frac{{{e^{2π}}(1-{e^{1008π}})}}{{1-{e^{2π}}}}$D.$-\frac{{{e^{2π}}(1-{e^{2014π}})}}{{1-{e^{2π}}}}$

分析 先求出其导函数,利用导函数求出其单调区间,进而找到其极小值f(2kπ+2π)=e2kπ+2π,再利用等比数列的求和公式来求函数f(x)的各极小值之和即可.

解答 解:∵函数f(x)=ex(sinx-cosx),
∴f′(x)=(ex)′(sinx-cosx)+ex(sinx-cosx)′=2exsinx,
∵x∈(2kπ+π,2kπ+2π)时,f′(x)<0,x∈(2kπ+2π,2kπ+3π)时,f′(x)>0,
∴x∈(2kπ+π,2kπ+2π)时原函数递减,
x∈(2kπ+2π,2kπ+3π)时,函数f(x)递增,
故当x=2kπ+2π时,f(x)取极小值,
其极小值为f(2kπ+2π)=e2kπ+2π[sin(2kπ+2π)-cos(2kπ+2π)]
=e2kπ+2π×(0-1)=-e2kπ+2π
又0≤x≤2016π,
∴函数f(x)的各极小值之和S=-e-e-e-…-e2012π-e2014π-e2016π
=$\frac{-{e}^{2π}[1-({e}^{2π})^{1008}]}{1-{e}^{2π}}$=-$\frac{{e}^{2π}(1-{e}^{2016π})}{1-{e}^{2π}}$.
故选:A.

点评 本题主要考查利用导数研究函数的极值以及等比数列的求和.利用导数求得当x=2kπ+2π时,f(x)取极小值是解题的关键,利用导数研究函数的单调性与最值是教学中的重点和难点,学生应熟练掌握,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2-5x+4≤0},B={x|x2-7x+10≤0},C={x|x≤a}.
(1)在集合A中任取一个元素x,求事件“x∈A∩B”的概率;
(2)命题p:x∈A,命题q:x∈C,若q是p的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+3|-m,m>0,f(x-3)≥0的解集为(-∞,-2]∪[2,+∞).
(Ⅰ)求m的值;
(Ⅱ)若?x∈R,使得$f(x)≥|{2x-1}|-{t^2}+\frac{3}{2}t+1$成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设等比数列{an}的前n项和为Sn,若S3=9,S6=27,则S9=(  )
A.81B.72C.63D.54

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=sin(ax+\frac{π}{3})(a>0)$图象相邻两对称轴间的距离为4,则a的值是(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,屋顶的断面图是等腰三角形ABC,其中AB=BC,横梁AC的长为定值2l,试问:当屋顶面的倾斜角α为多大时,雨水从屋顶(顶面为光滑斜面)上流下所需A的时间最短?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=ax2+b(lnx-x),g(x)=-$\frac{1}{2}x$2+(1-b)x,已知曲线y=f(x)在点(1,f(1))处的切线与直线x-y+1=0垂直.
(Ⅰ)求a的值;
(Ⅱ)求函数f(x)的极值点;
(Ⅲ)若对于任意b∈(1,+∞),总存在x1,x2∈[1,b],使得f(x1)-f(x2)-1>g(x1)-g(x2)+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a2,a3-3b2=2.
(1)求{an}和{bn}的通项公式;
(2)设数列{an}的前n项和为Sn,数列{bn}的前n项和为Tn,求Sn和Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知方程ln|x|-ax2+$\frac{3}{2}$=0有4个不同的实数根,则实数a的取值范围是(  )
A.$({0,\frac{e^2}{2}})$B.$({0,\frac{e^2}{2}}]$C.$({0,\frac{e^2}{3}})$D.$({0,\frac{e^2}{3}}]$

查看答案和解析>>

同步练习册答案