精英家教网 > 高中数学 > 题目详情
5.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)离心率为$\frac{\sqrt{3}}{2}$,则双曲$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1渐近线方程(  )
A.x±2y=0B.2x±y=0C.x±4y=0D.x±2y=0

分析 由题意,$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}$=$\frac{3}{4}$,可得$\frac{b}{a}$=$\frac{1}{2}$,即可求出双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1渐近线方程.

解答 解:由题意,$\frac{{a}^{2}-{b}^{2}}{{a}^{2}}$=$\frac{3}{4}$,
∴$\frac{b}{a}$=$\frac{1}{2}$,
∴双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1渐近线方程是y=±2x,
故选:B.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若正三角形内切圆的半径为r,则该正三角形的周长C(r)=6$\sqrt{3}$r,面积S(r)=3$\sqrt{3}$r2,发现S′(r)=C(r).相应地,若正四面体内切球的半径为r,则该正四面体的表面积S(r)=24$\sqrt{3}$r2.请用类比推理的方法猜测该正四面体的体积V(r)=8$\sqrt{3}$r3(写出关于r的表达式).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,过点A(0,1)作斜率为k的直线l,若直线l与以C为圆心的圆x2+y2-4x+3=0有两个不同的交点P和Q.
(Ⅰ)求k的取值范围;
(Ⅱ)是否存在实数k,使得向量$\overrightarrow{CP}+\overrightarrow{CQ}$与向量$\overrightarrow{m}$=(-2,1)共线?如果存在,求k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知sinα=$\frac{1}{3}$,则cos(α+$\frac{3π}{2}$)=(  )
A.$\frac{2\sqrt{2}}{3}$B.-$\frac{2\sqrt{2}}{3}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l1:y=2x+3,l2:y=x+2相交于点C.
(1)求点C的坐标;
(2)求以点C为圆心,且与直线3x+4y+4=0相切的圆的方程;
(3)若直线x+y+t=0与(2)中的圆C交于A、B两点,求△ABC面积的最大值及实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某工厂为了对新研究的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x元88.28.48.68.89
销售y件908483807568
(1)求回归直线方程$\hat y=\hat bx+\hat a$,其中$\hat b$=-20.
(2)预计在今后的销售中,销售与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价定为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.求圆心在y轴上,且与直线l1:4x-3y+12=0,直线l2:3x-4y-12=0都相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.根据下列条件分别写出直线方程,并化成一般式方程.
(Ⅰ)斜率是$\sqrt{3}$,且经过点A(5,3).
(Ⅱ)斜率为4,在y轴上的截距为-2.
(Ⅲ)经过A(-1,5),B(2,-1)两点.
(Ⅳ)在x,y轴上的截距分别是-3,-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.花园小区内有一块三边长分别是5m,5m,6m的三角形绿化地,有一只小花猫在其内部玩耍,若不考虑猫的大小,则在任意指定的某时刻,小花猫与三角形三个顶点的距离均超过2m的概率是1-$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案