精英家教网 > 高中数学 > 题目详情
已知等差数列{an}中,a2=5,a5=14,求公差d及数列的前5项的和S5
考点:等差数列的前n项和,等差数列的通项公式
专题:函数的性质及应用
分析:利用等差数列的通项公式和前n项和公式求解.
解答: 解:∵等差数列{an}中,a2=5,a5=14,
∴公差d=
14-5
5-2
=3,
∴a1=5-3=2,
S5=5×2+
5×4
2
×3
=40.
点评:本题考查等差数列的公差和通项公式的求法,是基础题,解题时要认真审题,注意等差数列的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|y=ln(x+1)},B={-2,-1,0,1},则(∁RA)∩B=(  )
A、{-2}
B、{-2,-1}
C、{-2,-1,0}
D、{-2,-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+
6
=0相切,直线l:x=my+4与椭圆C相交于A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求
OA
OB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别记为a、b、c,已知sinC+cosC=1-sin
C
2

(1)求sinC的值;
(2)若△ABC外接圆面积为(4+
7
)π,试求
AC
BC
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有甲、乙两个盒子,甲盒中有6个红球,4个白球;乙盒中有4个红球,4个白球,球除颜色外完全相同.
(1)从甲盒中任取3个球,求取出红球的个数X的分布列和均值;
(2)若从甲盒中任取2个球放入乙盒中,然后再从乙盒中任取一个球,求取出的这个球是白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(1-x)ex-1.
(1)证明:当x>0时,f(x)<0;
(2)设a1=1,anean+1=ean-1,证明对任意的正整数n,总有an+1<an

查看答案和解析>>

科目:高中数学 来源: 题型:

设非零数列{an}满足anan+2=an+12+λ(-1)n+1(n∈N+).
(1)当λ=0时,求证:an-man+m=an2,(n>m 且m,n∈R+).
(2)当a1=1,a2=2,λ=3,求证:an+2=an+3an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥V-ABCD中,VA⊥底面ABCD,底面ABCD是边长为2的正方形.
(1)求证:BD⊥VC;
(2)若VA=4,且E为VD中点,求异面直线AE与VC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线nx+(n+1)y=
2
(n∈N*)与两坐标轴围成的三角形的面积为Sn,则S1+S2+S3+…+S2013的值为
 

查看答案和解析>>

同步练习册答案