精英家教网 > 高中数学 > 题目详情
16.设i是虚数单位,则复数i3-$\frac{2}{i}$=(  )
A.iB.3iC.-iD.-3i

分析 利用复数的运算法则即可得出.

解答 解:原式=-i-$\frac{2(-i)}{-i•i}$=i,
故选:A.

点评 本题考查了复数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如果执行如图所示的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则(  )
A.A+B为a1,a2,…,aN的和
B.A和B分别是a1,a2,…,aN中最大的数和最小的数
C.$\frac{A+B}{2}$为a1,a2,…,aN的算术平均数
D.A和B分别是a1,a2,…,aN中最小的数和最大的数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$f(x)=\left\{{\begin{array}{l}{f(x+1),}&{x<2}\\{{2^x},}&{x≥2}\end{array}}\right.$,则f(log23)=(  )
A.12B.6C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设数列{an}的前n项和为Sn,已知a2=2,an+2+(-1)n-1an=1,则S40=(  )
A.260B.250C.240D.230

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,a=$\sqrt{3}$,b=1,∠A=$\frac{π}{3}$,则cosB=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,点$Q({b\;\;,\;\;\frac{a}{b}})$在椭圆上,O为坐标原点.
(1)求椭圆C的方程;
(2)已知点P,M,N为椭圆C上的三点,若四边形OPMN为平行四边形,证明四边形OPMN的面积S为定值,并求该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.实数x、y满足$\left\{\begin{array}{l}{x≤3}\\{x+y≥0}\\{x-y+6≥0}\end{array}\right.$,若z=ax+y的最大值为3a+9,最小值为3a-3,则a的取值范围是[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xoy中,圆的参数方程为$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=\sqrt{2}sinθ\end{array}\right.$(θ为参数),直线C1的参数方程为$\left\{\begin{array}{l}x=1+t\\ y=2+t\end{array}\right.$(t为参数).
(1)若直线C1与O圆相交于A,B,求弦长|AB|;
(2)以该直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C2的极坐标方程为$ρ=2cosθ+2\sqrt{3}sinθ$,圆O和圆C2的交点为P,Q,求弦PQ所在直线的直角坐标方程.

查看答案和解析>>

同步练习册答案