【题目】在如图所示的几何体中,四边形
是等腰梯形,
,
,
平面
,
,
.
![]()
(
)求证:
平面
.
(
)求二面角
的余弦值.
(
)在线段
(含端点)上,是否存在一点
,使得
平面
,若存在,求出
的值;若不存在,请说明理由.
【答案】(
)见解析;(
)
;(
)存在, ![]()
【解析】试题分析:(1)由题意,证明
,
,证明
面
;(2)建立空间直角坐标系,求平面
和平面
的法向量,解得余弦值为
;(3)得
,
,所以
,
,所以存在
为
中点.
试题解析:
(
)∵
,
,∴
.
∵
,∴
,∴
,
.
∵
,且
,
、
面
,∴
面
.
(
)知
,∴
.
∵
面
,
,
,
两两垂直,以
为坐标原点,
以
,
,
为
,
,
轴建系.
设
,则
,
,
,
,
,
∴
,
.
设
的一个法向量为
,
∴
,取
,则
.
由于
是面
的法向量,
则
.
∵二面角
为锐二面角,∴余弦值为
.
(
)存在点
.
设
,
,
∴
,
,
,
∴
,
.
∵
面
,
.
若
面
,∴
,
∴
,
∴
,∴
,∴存在
为
中点.
![]()
【题型】解答题
【结束】
19
【题目】已知函数
.
(
)当
时,求此函数对应的曲线在
处的切线方程.
(
)求函数
的单调区间.
(
)对
,不等式
恒成立,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,三棱柱
中,
平面
,
.过
的平面交
于点
,交
于点
.
![]()
(l)求证:
平面
;
(Ⅱ)求证:
;
(Ⅲ)记四棱锥
的体积为
,三棱柱
的体积为
.若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
= (1,2sinθ),
= (sin(θ+
),1),θ
R。
(1) 若
⊥
,求 tanθ的值;
(2) 若
∥
,且 θ
(0,
),求 θ的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么,在这个空间图形中必有( )
![]()
A.
所在平面B.
所在平面
C.
所在平面D.
所在平面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是边长为3的正方形,
平面
,
平面
,
.
![]()
(1)证明:平面
平面
;
(2)在
上是否存在一点
,使平面
将几何体
分成上下两部分的体积比为
?若存在,求出点
的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于古典概型的说法中正确的是( )
①试验中所有可能出现的基本事件只有有限个;
②每个事件出现的可能性相等;
③每个基本事件出现的可能性相等;
④基本事件的总数为n,随机事件A若包含k个基本事件,则
.
A. ②④ B. ③④ C. ①④ D. ①③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com