精英家教网 > 高中数学 > 题目详情
1.(1)已知x,y∈R+,且x+y>2,求证:$\frac{1+x}{y}$与$\frac{1+y}{x}$中至少有一个小于2.
(2)函数f(x)=lnx-$\frac{a(x-1)}{x}$(x>0,a∈R).当a>0时,求证:函数f(x)的图象存在唯一零点的充要条件是a=1.

分析 (1)本题证明结论中结构较复杂,而其否定结构简单,故可用反证法证明其否定不成立,以此来证明结论成立.
(2)充分性:a=1时,f′(x)=$\frac{x-1}{{x}^{2}}$(x>0).利用导数研究函数的单调性极值最值可得:x=1时,函数f(x)取得极小值也是最小值.即可证明.
必要性:f(x)=0在(0,+∞)上有唯一解,且a>0,由导数的性质可得:在x=a处有极小值也是最小值f(a),f(a)=lna-a+1再利用导数研究其单调性极值与最值即可证明.

解答 证明:(1)(反证法):假设$\frac{1+x}{y}$与$\frac{1+y}{x}$均不小于2,即$\frac{1+x}{y}$≥2,$\frac{1+y}{x}$≥2,
∴1+x≥2y,1+y≥2x.将两式相加得:x+y≤2,与已知x+y>2矛盾,
故$\frac{1+x}{y}$与$\frac{1+y}{x}$中至少有一个小于2.
(2)充分性:f′(x)=$\frac{1}{x}$-a•$\frac{1}{{x}^{2}}$=$\frac{x-a}{{x}^{2}}$(x>0),
a=1时,f′(x)=$\frac{x-1}{{x}^{2}}$(x>0).
在(0,1)上单调递减,在(1,+∞)上单调递增,
∴x=1时,函数f(x)取得极小值也是最小值.
即fmin(x)=f(1)=0.
∴a=1时,函数f(x)的图象在(0,+∞)上有唯一的一个零点x=1.
必要性:f(x)=0在(0,+∞)上有唯一解,且a>0,
当a>0时,单调递增区间为(a,+∞),单调递减区间为(0,a).
在x=a处有极小值也是最小值f(a),f(a)=lna-a+1.
令g(a)=lna-a+1,g′(a)=$\frac{1}{a}$-1=$\frac{1-a}{a}$.
当0<a<1时,g′(a)>0,在(0,1)上单调递增;
当a>1时,g′(a)<0,在(1,+∞)上单调递减.
∴gmax(a)=g(1)=0,g(a)=0只有唯一解a=1.
f(x)=0在(0,+∞)上有唯一解时必有a=1.
综上:在a>0时,f(x)=0在(0,+∞)上有唯一解的充要条件是a=1.

点评 本题考查了利用导数研究函数的单调性极值与最值、两次求导的方法、等价转化方法、不等式的解法、充要条件,考查了分析问题与解决问题的能力、推理能力与计算能力,反证法证明命题,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在△ABC中,已知sin(A+B)=2sinAcosB,那么△ABC一定是(  )
A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,$C=\frac{π}{3}$.
(1)若△ABC的面积等于$\sqrt{3}$,求a,b;
(2)若sinC+sin(B-A)=2sin2A,证明:△ABC是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}的通项公式an=-5n+2,则其前n项和Sn=-$\frac{5{n}^{2}+n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:
(1)取出的3个小球上的数字互不相同的概率;
(2)随机变量X的分布列;
(3)一次取球所得计分介于20分到40分之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,圆O:x2+y2=4与坐标轴交于点A,B,C.设点M是圆上任意一点(不在坐标轴上),直线CM交x轴于点D,直线BM交直线AC于点N.
(1)当D点坐标为(2$\sqrt{3}$,0)时,求弦CM的长;
(2)求证:2kND-kMB是与CM斜率k无关的定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l在y轴上的截距是-3,它被两坐标轴截得的线段的长为5,则此直线的方程是3x-4y-12=0或3x+4y+12=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的首项为a1=1,且an+1=$\frac{1}{2}{a_n}+\frac{1}{2}$,则此数列第4项是(  )
A.1B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+x
(1)求f'(x);
(2)求函数f(x)=x2+x在x=2处的导数.

查看答案和解析>>

同步练习册答案