精英家教网 > 高中数学 > 题目详情
1.在三棱柱ABC-A1B1C1中,已知侧棱AA1⊥底面ABC,且AB=AC=5,BC=6,AA1=9,D为BC的中点,F为C1C上的动点.
(1)若CF=6,求证:B1F⊥平面ADF;
(2)若FD⊥B1D,求三棱锥B1-ADF的体积.

分析 (1)证明直线与平面垂直,关键要找到两条相交直线与之都垂直,通过证明AD⊥平面BCC1B1得AD⊥B1F,然后在矩形BCC1B1中通过证明Rt△DCF≌Rt△FC1B1得B1F⊥FD,问题从而得证.
(2)利用等体积法,将要求的三棱锥B1-ADF的体积转化为高和底面都已知的三棱锥A-B1DF的体积来求.

解答 (1)证明:∵AB=AC,D为BC中点,∴AD⊥BC,
又直三棱柱中:BB1⊥底面ABC,AD?底面ABC,
∴AD⊥BB1
∴AD⊥平面BCC1B1
∵B1F?平面BCC1B1
∴AD⊥B1F.
在矩形BCC1B1中:C1F=CD=3,CF=C1B1=6
∴Rt△DCF≌Rt△FC1B1
∴∠CFD=∠C1B1F
∴∠B1FD=90°,即B1F⊥FD,
∵AD∩FD=D,
∴B1F⊥平面AFD;
(2)解:∵FD⊥B1D,BC=6,AA1=9,D为BC的中点,
∴CF=1,C1F=8,
∴${S}_{△{B}_{1}DF}$=6×9-$\frac{1}{2}×1×3$-$\frac{1}{2}×3×9$-$\frac{1}{2}×6×8$=15,
∵D为BC的中点,AB=AC=5,BC=6,
∴AD=4,
∵AD⊥平面BCC1B1
∴三棱锥B1-ADF的体积=三棱锥A-B1DF的体积=$\frac{1}{3}×15×4$=20.

点评 本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是个中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为4.
(1)求椭圆的方程;
(2)过点E(-1,0)且不与坐标轴垂直的直线l交此椭圆于C,D两点,若线段CD的垂直平分线与x轴交于点M(x0,0),求实数x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,AB是圆O的直径,弦CD⊥AB于点M,点E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于点G.
(1)求证:EF=EG;
(2)求线段MG的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设0<a<1,函数f(x)=loga|x|的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.高二某班有5名同学站一排照相,其中甲乙两位同学必须相邻的不同站法有(  )种.
A.120B.72C.48D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果10N的力能使弹簧压缩10cm,为在弹性限度内将弹簧从平衡位置拉到离平衡位置6cm处,则克服弹力所做的功为0.18J.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x)
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当-3<a<-2时,若对任意λ1,λ2∈[1,3],使得|f(λ1)-f(λ2)|<(m+ln3)a-2ln3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,AB为⊙O的直径,过点B作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D.
(Ⅰ)求证:CE2=CD•CB.
(Ⅱ)若AB=2,BC=$\frac{12}{5}$,求CE与CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若正数a,b满足ab=a+b+8,则ab的最值范围为(  )
A.[2,+∞)B.(-∞,2]C.(-∞,16]D.[16,+∞)

查看答案和解析>>

同步练习册答案