精英家教网 > 高中数学 > 题目详情
20.设Sn是等差数列{an}的前n项和,若$\frac{a_5}{a_3}$=2,则$\frac{S_9}{S_5}$=(  )
A.$\frac{18}{5}$B.$\frac{14}{5}$C.$\frac{12}{5}$D.$\frac{9}{5}$

分析 利用等差数列的性质与求和公式即可得出.

解答 解:∵$\frac{a_5}{a_3}$=2,
则$\frac{S_9}{S_5}$=$\frac{\frac{9({a}_{1}+{a}_{9})}{2}}{\frac{5({a}_{1}+{a}_{5})}{2}}$=$\frac{9{a}_{5}}{5{a}_{3}}$=$\frac{18}{5}$.
故选:A.

点评 本题考查了等差数列的性质与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.若sin(x-$\frac{3}{4}$π)cos(x-$\frac{π}{4}$)=-$\frac{1}{4}$,则cos4x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$f(x)=\left\{{\begin{array}{l}{π,x>0}\\{1,x=0}\\{-π,x<0}\end{array}}\right.,g(x)=\left\{{\begin{array}{l}{1,x为有理数}\\{{{log}_{\frac{1}{2}}}π,x为无理数}\end{array}}\right.$,则f(g(π))的值为(  )
A.1B.πC.D.没有正确答案

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知变量x,y满足约束条件Ω:$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤a\end{array}\right.$,若Ω表示的区域面积为4,则z=3x-y的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在一次研究性学习中,老师给出函数f(x)是定义在R上的奇函数,当x<0时,f(x)=ex(x+1).甲、乙、丙、丁四位同学在研究此函数时给出下列结论:
①当x>0时,f(x)=ex(1-x);
②f(x)=0有2个不相等实根;
③f(x)>0的解集为(-1,0)∪(1,+∞);
④函数f(x)在R为减函数,
其中正确结论的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式x(3-x)≥0的解集是(  )
A.{x|x≤0或x≥3}B.{x|0≤x≤3}C.{x|x≥3}D.{x|x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某产品的广告费用x与销售额y的统计数据如表:根据表格数据可得回归方程 y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$ 中的$\stackrel{∧}{b}$为 9.4,据此模型预报广告费用为 6万元时销售额为(  )
广告费用x(万元)4235
销售额y(万元)49263954
A.63.6 万元B.65.5 万元C.67.7 万元D.72.0 万元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.实系数一元二次方程x2+ax+2b=0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:
(1)(a-1)2+(b-2)2的值域.
(2)$\frac{a+b-3}{a-1}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若集合A={x|-1≤2x+1≤3},B={y|y=x2-2x(x∈(2,3]},求A∩B,(∁RA)∪B.

查看答案和解析>>

同步练习册答案