精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的最小正周期;
(2)已知中,角所对的边长分别为,若,求的面积

(1);(2).

解析试题分析:(1)利用二倍角公式的变形:及辅助角公式,可将化简为,从而的最小正周期为;(2)由(1)及,可得:,根据可得,从而,舍去),再利用正弦定理,从而得,则,, 因此的面积.
试题解析:(1)∵
, ∴的最小正周期为
(2)由(1)及,∴,又∵,∴
,又∵,∴,由正弦定理:,得,则,,  ∴.
考点:1.三角恒等变形;2.正弦定理解三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)求函数的最小正周期.
(2)求函数在闭区间上的最小值并求当取最小值时,的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数;
(1).求的周期和单调递增区间;
(2).若关于x的方程上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

受日月引力影响,海水会发生涨退潮现象.通常情况下,船在涨潮时驶进港口,退潮时离开港口.某港口在某季节每天港口水位的深度(米)是时间,单位:小时,表示0:00—零时)的函数,其函数关系式为.已知一天中该港口水位的深度变化有如下规律:出现相邻两次最高水位的深度的时间差为12小时,最高水位的深度为12米,最低水位的深度为6米,每天13:00时港口水位的深度恰为10.5米.
(1)试求函数的表达式;
(2)某货船的吃水深度(船底与水面的距离)为7米,安全条例规定船舶航行时船底与海底的距离不小于3.5米是安全的,问该船在当天的什么时间段能够安全进港?若该船欲于当天安全离港,则它最迟应在当天几点以前离开港口?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.⑴试确定A,的值;⑵现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在区间上的函数y=f(x)的图象关于直线x=-对称,当x∈时,函数f(x)=Asin(ωx+φ)的图象如图所示.

(1)求函数y=f(x)在上的表达式;
(2)求方程f(x)=的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的值;
(2)设,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数.
(1)若,且,求的值;
(2)求函数的最小正周期及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若,求的最大值及相应的的取值集合;
(2)若的一个零点,且,求的值和的最小正周期.

查看答案和解析>>

同步练习册答案