分析 (Ⅰ)利用切线的性质即可得出∠DAC=∠CAB,即AC平分∠BAD;
(Ⅱ)利用相似三角形的性质,得出AC2=AB•AD,即可求∠ACD的大小.
解答 证明:
(I)连接BC,
∵AB是圆O的直径,∴∠ACB=90°.
∴∠B+∠CAB=90°
∵AD⊥CE,∴∠ACD+∠DAC=90°,
∵AC是弦,且直线CE和圆O切于点C,
∴∠ACD=∠B
∴∠DAC=∠CAB,即AC平分∠BAD;
解:(Ⅱ)由(Ⅰ)知△ABC∽△ACD,
∴$\frac{AC}{AB}=\frac{AD}{AC}$,
由此得AC2=AB•AD.
∵AB=4,AD=1,
∴AC=2,于是∠ACD=30°.
点评 熟练掌握切线的性质、相似三角形的判定与性质是解题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 242 | B. | 121 | C. | 244 | D. | 122 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | -$\frac{1}{4}$ | C. | -$\frac{1}{8}$ | D. | -$\frac{1}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 先递减再递增 | B. | 先递增再递减 | ||
| C. | 先递增再递减最后又递增 | D. | 先递减再递增最后又递减 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com