精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)对任意x∈R都有f(x+2)=-f(x),且y=f(x-1)的图象关于点(1,0)对称,当x∈(0,2)时f(x)=2x2,则f(2015)=(  )
A.-2B.2C.-98D.98

分析 由已知可得函数f(x)是周期为4的周期函数,且为奇函数,结合当x∈(0,2)时f(x)=2x2,可得f(2015)的值.

解答 解:∵对任意x∈R都有f(x+2)=-f(x),
∴f(x+4)=-f[(x+2)+2]=-f(x+2)=f(x),
即函数f(x)是周期为4的周期函数,
又∵y=f(x-1)的图象关于点(1,0)对称,
∴y=f(x)的图象关于点(0,0)对称,
∴函数f(x)为奇函数,
又∵当x∈(0,2)时f(x)=2x2
∴f(2015)=f(504×4-1)=f(-1)=-f(1)=-2,
故选:A.

点评 本题考查的知识点是函数的周期性,函数的奇偶性,函数求值,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.化简$\overrightarrow{AB}$+$\overrightarrow{BD}$-$\overrightarrow{AD}$=(  )
A.$\overrightarrow{AD}$B.$\overrightarrow 0$C.$\overrightarrow{BC}$D.$\overrightarrow{DA}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,$a=7,b=4\sqrt{3},c=\sqrt{13}$,则△ABC的最小角为(  )
A.60°B.30°C.15°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,$|\overrightarrow{AB}|=2$,$|\overrightarrow{AC}|=3$,∠A=45°,M为BC边上的中点,分别求下列各式的值:
(1)$\overrightarrow{AB}$•$\overrightarrow{AC}$,
(2)$\overrightarrow{AB}$•$\overrightarrow{BC}$,
(3)$\overrightarrow{AB}$•$\overrightarrow{AM}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={x|y=ln(x-3)},集合B={x|2x-4≤1},则A∩B={x|3<x≤4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知向量$\overrightarrow{a}$=($\frac{1}{2}$sin2x,cos2x-$\frac{1}{2}$),$\overrightarrow{b}$=(sinφ,cosφ),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$(0<φ<π),其图象过点($\frac{π}{8}$,$\frac{1}{2}$)
(1)求φ的值和f(x)的图象的对称中心;
(2)将函数y=f(x)的图象上各点的横坐标缩短到原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\sqrt{3}sin2x+2{cos^2}x+3$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在$[0,\frac{π}{2}]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.定义在R上的函数f(x)=$\frac{x}{{{x^2}+1}}$,若函数g(x)=f(x)+$\frac{mx}{1+x}$在区间(-1,1)上有且仅有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示,已知圆(x+3)2+y2=100,定点A(3,0),M为圆C上一动点,点P在AM上,点N在CM上,且满足$\overrightarrow{AM}$=2$\overrightarrow{AP}$,$\overrightarrow{NP}$•$\overrightarrow{AM}$=0,点N的轨迹为曲线E.
(1)求曲线E的方程;
(2)求过点Q(2,1)的弦的中点的轨迹方程.

查看答案和解析>>

同步练习册答案