| A. | 4+4$\sqrt{3}$cm2,$\frac{16\sqrt{3}}{3}$cm3 | B. | 4+4$\sqrt{3}$cm2,$\frac{16\sqrt{2}}{3}$cm3 | C. | 12cm2,$\frac{16\sqrt{3}}{3}$cm3 | D. | 12cm2,$\frac{16\sqrt{2}}{3}$cm3 |
分析 三视图复原的几何体是正四棱锥,根据三视图的数据,求出几何体的表面积及体积.
解答 解:三视图复原的几何体是正四棱锥,底面是边长为2的正方形,斜高为2,
所以正四棱锥的表面积为:S底+S侧=2×2+4×$\frac{1}{2}$×2×2=12cm2,
体积为$\frac{1}{3}×4×\sqrt{4-1}$=$\frac{4\sqrt{3}}{3}$cm3.
故选:C.
点评 本题考查由三视图求几何体的面积、体积,考查对三视图的理解与应用,本题解题的关键是用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”,本题是一个基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A=R,B={x|x>0},f:x→y=|x| | B. | A=Z,B=N*,f:x→y=x2 | ||
| C. | A=Z,B=Z,f:x→y=$\sqrt{x}$ | D. | A=[-1,1],B={0},f:x→y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com