【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数).以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,且
与
交于
,
两点,已知点
的极坐标为
.
(1)求曲线
的普通方程和直线
的直角坐标方程,并求
的值;
(2)若矩形
内接于曲线
且四边与坐标轴平行,求其周长的最大值.
科目:高中数学 来源: 题型:
【题目】垃圾分类是改善环境,节约资源的新举措.住建部于6月28日拟定了包括我市在内的46个重点试点城市,要求这些城市在2020年底基本建成垃圾分类处理系统.为此,我市某中学对学生开展了“垃圾分类”有关知识的讲座并进行测试,将所得测试成绩整理后,绘制出频率分布直方图如图所示.
![]()
(1)求频率分布直方图中a的值,并估计测试的平均成绩;
(2)将频率视为相应的概率,如果从参加测试的同学中随机选取4名同学,这4名同学中测试成绩在
的人数记为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“公平正义”是社会主义和谐社会的重要特征,是社会主义法治理念的价值追求.“考试”作为一种公平公正选拔人才的有效途径,正被广泛采用.每次考试过后,考生最关心的问题是:自己的考试名次是多少?自已能否被录取?能获得什么样的职位?
某单位准备通过考试(按照高分优先录取的原则)录用
名,其中
个高薪职位和
个普薪职位.实际报名人数为
名,考试满分为
分. 考试后对部分考生考试成绩进行抽样分析,得到频率分布直方图如下:
![]()
试结合此频率分布直方图估计:
(1)此次考试的中位数是多少分(保留为整数)?
(2)若考生甲的成绩为280分,能否被录取?若能被录取,能否获得高薪职位?(分数精确到个位,概率精确到千分位)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知在矩形
中,
为边
的中点,将
沿直线
折起到
(
平面
)的位置,
为线段
的中点.
![]()
(1)求证:
平面
;
(2)已知
,当平面
平面
时,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
过点
,倾斜角为
,在以坐标原点为极点,
轴的非负半轴为极轴的极坐标系中,曲线
的方程为
.
(1)写出直线
的参数方程和曲线
的直角坐标方程;
(2)若直线
与曲线
相交于
两点,设点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,已知
,顶点P在平面ABC上的射影为
的外接圆圆心.
![]()
(1)证明:平面
平面ABC;
(2)若点M在棱PA上,
,且二面角P-BC-M的余弦值为
,试求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com