分析 由函数f(x+1)的图象关于(-1,0)对称且由y=f(x+1)向右平移1个单位可得y=f(x)的图象可知函数y=f(x)的图象关于原点对称即函数y=f(x)为奇函数,在已知条件中令x=-1可求f(1)及函数的周期,利用所求周期即可求解.
解答 解:∵函数f(x+1)的图象关于(-1,0)对称且把y=f(x+1)向右平移1个单位可得y=f(x)的图象,
∴函数y=f(x)的图象关于(0,0)对称,即函数y=f(x)为奇函数,
∴f(0)=0,f(1)=3,
∵f(x+2)=f(2-x)+4f(2)=-f(x-2)+4f(2),
∴f(x+4)=-f(x)+4f(2),
f(x+8)=-f(x+4)+4f(2)=f(x),
函数的周期为8,
f(2015)=f(252×8-1)=f(-1)=-f(1)=-3.
故答案为:-3.
点评 本题考查了抽象函数的奇偶性对称性、图象变换、求值,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,3) | B. | (-1,1) | C. | (-1,0)∪(1,3) | D. | (-1,0)∪(0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 8 | C. | 12 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-8)2+(y-3)2=25 | B. | (x-8)2+(y+3)2=5 | C. | (x-8)2+(y-3)2=5 | D. | (x-8)2+(y+3)2=25 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com