精英家教网 > 高中数学 > 题目详情
10.老师把4本不同的数学参考书和2本不同的英语参考书发给甲、乙两位同学,每人3本,假设老师拿每本书是随机的,用随机变量X表示同学甲中英语书的本数,则X的数学期望为1.

分析 由题意得X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的数学期望.

解答 解:老师把4本不同的数学参考书和2本不同的英语参考书发给甲、乙两位同学,每人3本,
基本事件总数n=$\frac{{C}_{6}^{3}{C}_{3}^{3}}{{A}_{2}^{2}}•{A}_{2}^{2}$=20,
由题意得X的可能取值为0,1,2,
P(X=0)=$\frac{{C}_{4}^{3}}{20}$=$\frac{1}{5}$,
P(X=1)=$\frac{{C}_{2}^{1}{C}_{4}^{2}}{20}$=$\frac{3}{5}$,
P(X=2)=$\frac{{C}_{4}^{1}{C}_{2}^{2}}{20}$=$\frac{1}{5}$,
∴X的数学期望为EX=$0×\frac{1}{5}+1×\frac{3}{5}+2×\frac{1}{5}$=1.
故答案为:1.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意排列组合知识的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设x为实数,求证:(x2+x+1)2≤3(x4+x2+1)﹒

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设离散随机变量X的概率函数为P(X=k)=$\frac{5a}{{2}^{k}}$,k=1,2,…则常数a=(  )
A.$\frac{1}{10}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x3+ax2+(a+1)x是奇函数,则曲线y=f(x)在x=0处的切线方程为(  )
A.y=xB.y=x+1C.y=1D.y=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知命题“p:?x0∈R,|x0+1|+|x0-2|≤a”是真命题,则实数a的最小值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{3x-y-3≤0}\end{array}\right.$,则z=2x-y+6的最大值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.9粒种子分种在3个坑中,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑内不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种.
(1)求单个坑不需要补种的概率;
(2)用ξ表示需要补种的坑数,求ξ的分布列;
(3)假定每个坑至多补种一次,每补种1个坑需10元,用X表示补种的费用,求X的期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=sin(ωx+φ)(x∈R)(ω>0,|φ|<$\frac{π}{2}}$) 的部分图象 如图所示,其最小正周期为π;如果x1,x2∈(-$\frac{π}{6}$,$\frac{π}{3}}$),且f(x1)=f(x2),则f(x1+x2)=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.f(x)=ln(x+$\sqrt{{x^2}+1}}$),若实数a,b满足f(a)+f(b-1)=0,则a+b为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案