科目:高中数学 来源: 题型:
已知在正项数列{an}中,a1=2,点An(
,
)在双曲线y2-x2=1上,数列{bn}中,点(bn,Tn)在直线y=-
x+1上,其中Tn是数列{bn}的前n项和.
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等比数列;
(3)若cn=an·bn,求证:cn+1<cn.
查看答案和解析>>
科目:高中数学 来源: 题型:
将石子摆成如图的梯形形状,称数列5,9,14,20,…为梯形数,根据图形的构成,此数列的第2 012项与5的差即a2 012-5=( )
![]()
A.2 018×2 012 B.2 018×2 011
C.1 009×2 012 D.1 009×2 011
查看答案和解析>>
科目:高中数学 来源: 题型:
已知数列{an}中,a1=
,an=2-
(n≥2,n∈N*),数列{bn}满足bn=
(n∈N*).
(1)证明:数列{bn}是等差数列;
(2)若Sn=(a1-1)·(a2-1)+(a2-1)·(a3-1)+…+(an-1)·(an+1-1),是否存在a,b∈Z,使得a≤Sn≤b恒成立?若存在,求出a的最大值与b的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
要证a2+b2-1-a2b2≤0,只要证明( )
A.2ab-1-a2b2≤0
B.a2+b2-1-
≤0
C.
-1-a2b2≤0
D.(a2-1)(b2-1)≥0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com