精英家教网 > 高中数学 > 题目详情

【题目】定义域为{x|x≠0}的函数f(x)满足:f(xy)=f(x)f(y),f(x)>0且在区间(0,+∞)上单调递增,若m满足f(log3m)+f( )≤2f(1),则实数m的取值范围是(
A.[ ,1)∪(1,3]
B.[0, )∪(1,3]
C.(0, ]
D.[1,3]

【答案】A
【解析】解:∵f(xy)=f(x)f(y),f(x)>0则令x=y=1可得f(1)=f2(1),即有f(1)=1.
令x=y=﹣1,则f(1)=f2(﹣1)=1,则f(﹣1)=1.
令y=﹣1,则f(﹣x)=f(x)f(﹣1)=f(x),即有f(x)为偶函数.
由f(log3m)+f( )≤2f(1),可得 f(log3m)+f(﹣log3m)≤2f(1),
即2f(log3m)≤2f(1),即 f(|log3m|)≤f(1),
由于f(x)在区间(0,+∞)上单调递增,则|log3m|≤1,且log3m≠0,
解得 ≤m<1或1<m≤3.
故选:A.
【考点精析】根据题目的已知条件,利用函数单调性的性质的相关知识可以得到问题的答案,需要掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 .

(1)求函数的最小值;

(2)对一切 恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点

)求椭圆C的方程;

)过点P02)的直线交椭圆CAB两点,求△AOBO为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间;

(2)若函数的图象在点处的切线的倾斜角为45°,对于任意的,函数在区间上总不是单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)试判断fx)的单调性,并证明你的结论;

(2)若fx)为定义域上的奇函数,求函数fx)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列几个命题

①奇函数的图象一定通过原点

②函数是偶函数,但不是奇函数

③函数f(x)=ax﹣1+3的图象一定过定点P,则P点的坐标是(1,4)

④若f(x+1)为偶函数,则有f(x+1)=f(﹣x﹣1)

⑤若函数在R上的增函数,则实数a的取值范围为[4, 8)

其中正确的命题序号为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中.

1试讨论函数的单调性及最值;

2若函数不存在零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数 满足,.

(1) 求解析式;

(2)当时,,求的值域;

(3)若方程没有实数根,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中, 平面,底面是菱形, 的交点, 为棱上一点,

(1)证明:平面⊥平面

(2)若三棱锥的体积为

求证: ∥平面

查看答案和解析>>

同步练习册答案