精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=kx(k≠0),对于任意的x都满足f(x-1)•f(x)=x2-x,函数g(x)=ax(a>0,且a≠1)
(1)求函数f(x)的解析式;
(2)已知关于x的方程g(2x+1)=f(x+1).f(x)恰有一实数解为x0,且,x0∈($\frac{1}{4}$,$\frac{1}{2}$).求实数a的取值范围.

分析 (1)根据f(x-1)•f(x)=x2-x列出恒等式,得出k;
(2)根据g(2x+1)=f(x+1)•f(x)得a2x+1=x2+x.作出函数图象,根据x0的范围列出不等式解出.

解答 解:(1)∵f(x-1)•f(x)=x2-x,
∴k(x-1)•kx=x2-x,
即k2x2-k2x=x2-x,∴k2=1,k=1或k=-1.
∴f(x)=x或f(x)=-x.
(2)f(x+1)•f(x)=(x+1)2-(x+1)=x2+x,g(2x+1)=a2x+1,∴a2x+1=x2+x.
作出y=a2x+1与y=x2+x的函数图象,如图所示:
∵a2x+1=x2+x.有唯一解x0,且x0∈($\frac{1}{4}$,$\frac{1}{2}$).∴0<a<1.
∴$\left\{\begin{array}{l}{{a}^{\frac{3}{2}}>(\frac{1}{4})^{2}+\frac{1}{4}}\\{{a}^{2}<{(\frac{1}{2})}^{2}+\frac{1}{2}}\end{array}\right.$,解得$(\frac{5}{16})^{\frac{2}{3}}$<a<$\frac{\sqrt{3}}{2}$.
∴实数a的取值范围是($(\frac{5}{16})^{\frac{2}{3}}$,$\frac{\sqrt{3}}{2}$).

点评 本题考查了函数解析式的求解,函数的零点与函数图象的关系,走出符合条件的函数图象是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在复平面内,复数z=(|a|-1)+(a+1)i(a∈R,i为虚数单位)对应的点位于第四象限的充要条件是(  )
A.a≥-1B.a>-1C.a≤-1D.a<-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某市共有初中学生270000人,其中初一年级,初二年级,初三年级学生人数分别为99000,90000,81000,为了解该市学生参加“开放性科学实验活动”的意向,现采用分层抽样的方法从中抽取一个容量为3000的样本,那么应该抽取初三年级的人数为(  )
A.800B.900C.1000D.1100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知sin($\frac{π}{4}$-x)=$\frac{4}{5}$,则sin2x=(  )
A.$\frac{18}{25}$B.$\frac{7}{25}$C.-$\frac{7}{25}$D.-$\frac{16}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从集合A={2,3,-4}中随机选取一个数记为k,则函数y=kx为单调递增的概率为(  )
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{4}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知△ABC中,AC=8,cosA=$\frac{1}{2}$,S△ABC=8$\sqrt{3}$
(1)求BC的值以及△ABC的外接圆的面积;
(2)设函数f(x)=2(cosCsinx-cosAcosx)+2,将函数f(x)的图象向下平移两个单位,再将横坐标变为原来的$\frac{1}{2}$,得到函数g(x)的图象,求函数g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)的图象是连续不断的,有如下的对应值表:
x123456
y123.5621.45-7.8211.45-53.76-128.88
则函数y=f(x)在区间[1,6]上的零点至少有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求满足下列条件的函数f(x).
(1)f(x)是三次函数,且f(0)=3,f′(0)=0,f′(1)=-3,f′(2)=0.
(2)f(x)是二次函数,且x2f′(x)-(2x-1)f(x)=1对x∈R恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,原理毒品”的电视公益广告,期望让更多的市民知道毒品的危害性,禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段性在[10,20),[20,30),[30,40),[40,50),[50,60)的市民进行问卷调查,由此得到样本频率分布直方图如图所示.
(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;
(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5人,求[50,60)年龄段抽取的人数;
(Ⅲ)从(Ⅱ)中方式得到的5人中再抽取2人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案