精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABC-A1B1C1中,侧棱AA1与侧面BCC1B1的距离为2,侧面BCC1B1的面积为4,此三棱柱ABC-A1B1C1的体积为
 
考点:棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:由已知条件推导出BC=
4
3
3
,BB1=
3
,S△ABC=
4
3
3
,由此能求出三棱柱ABC-A1B1C1的体积.
解答: 解:在三棱柱ABC-A1B1C1中,设BC=2x,
∵侧棱AA1与侧面BCC1B1的距离为2,
∴3x2=4,解得x=
2
3
3

∴BC=
4
3
3

∵侧面BCC1B1的面积为4,
∴BC×BB1=4,解得BB1=
4
BC
=
4
4
3
3
=
3

∴S△ABC=
1
2
×
4
3
3
×2
=
4
3
3

∴三棱柱ABC-A1B1C1的体积V=S△ABC×BB1=
4
3
3
×
3
=4.
故答案为:4.
点评:本题考查三棱柱的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={1,
a
b
,b},N={0,a+b,b2},M=N,求a1+b1+a2+b2+…+an+bn

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b∈R,A={(x,y)|y=ax+b,x∈Z},B={(x,y)|y=3x2+15,x∈Z},C={(x,y)|x2+y2≤144}.是否存在a,b,使得A∩B≠∅,且(a,b)∈C?

查看答案和解析>>

科目:高中数学 来源: 题型:

五棱台的上、下底面均是正五边形,边长分别是8cm和18cm,侧面是全等的等腰梯形,侧棱长是13cm,求它的侧面面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.
(Ⅰ)证明EF∥平面A1CD;
(Ⅱ)证明平面A1CD⊥平面A1ABB1
(Ⅲ)求直线BC1与直线AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+㏑x
x

(1)若函数在区间(t,t+
1
2
)(其中t>0)上存在极值,求实数t的取值范围;
(2)如果当x≥1时,不等式f(x)≥
a
x+1
恒成立,求实数a的取值范围.
(3)证明:[(n+1)!]2>(n+1)•en-2(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:

己知向量
a
b
满足|
a
|=2,丨
b
丨=1,(
b
-2
a
)丄
b
,则|
a
+
b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正三棱柱ABC-A1B1C1中,D为棱AA1的中点.若AA1=4,AB=2,则三棱锥A1-BC1D的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=
x-1, x≥2
1, x<2
,g(x)=x2-x(x∈R),则方程f[g(x)]=x的解为
 

查看答案和解析>>

同步练习册答案