已知二次函数
,且不等式
的解集为
.
(1)方程
有两个相等的实根,求
的解析式;
(2)
的最小值不大于
,求实数
的取值范围;
(3)
如何取值时,函数
存在零点,并求出零点.
(1)
;(2)实数
的取值范围是
;(3)详见解析.
解析试题分析:(1)根据不等式
的解集为
得到
、
为方程
的实根,结合韦达定理确定
、
、
之间的等量关系以及
这一条件,然后利用
有两个相等的实根得到
,从而求出
、
、
的值,最终得到函数
的解析式;(2)在
的条件下,利用二次函数的最值公式求二次函数
的最小值,然后利用已知条件列有关参数
的不等式,进而求解实数
;(3)先求出函数
的解析式,对首项系数为零与不为零进行两种情况的分类讨论,在首项系数为零的前提下,直接将
代入函数解析式,求处对应的零点;在首项系数不为零的前提下,求出
,
对
的符号进行三中情况讨论,从而确定函数
的零点个数,并求出相应的零点.
试题解析:(1)由于不等式的解集为
,
即不等式
的解集为
,
故
、
为方程
的两根,且
,
由韦达定理得
,
,
由于方程
有两个相等的实根,即方程
有两个相等的实根,
则
,
由于
,解得
,
,
,
所以
;
(2)由题意知,
,
,
,由于
,则有
,
解得
,由于
,所以
,即实数
的取值范围是
;
(3)
(※)
①当
时,方程为
,方程有唯一实根
,
即函数
有唯一零点
;
②当
时,
,
方程(※)有一解
,令
,
得
或
,
,即
或
,
(i)当
时,
(
(负根舍去)),
函数
有唯一零点
;
(ii)当![]()
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x2+4ax+2a+6.
(1)若函数f(x)的值域为[0,+∞),求a的值;
(2)若函数f(x)的函数值均为非负数,求g(a)=2-a|a+3|的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某商场销售某种商品的经验表明,该商品每日的销售量
(单位:千克)与销售价格
(单位:元/千克)满足关系式
,其中
,
为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求
的值;
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格
的值,使商场每日销售该商品所获得的利润最大.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数![]()
(I)求函数
的最小值;
(II)对于函数
和
定义域内的任意实数
,若存在常数
,使得不等式
和
都成立,则称直线
是函数
和
的“分界线”.
设函数
,![]()
,试问函数
和
是否存在“分界线”?若存在,求出“分界线”的方程.若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
渔场中鱼群的最大养殖量是m吨,为保证鱼群的生长空间,实际养殖量不能达到最大养殖量,必须留出适当的空闲量。已知鱼群的年增长量y吨和实际养殖量x吨与空闲率乘积成正比,比例系数为k(k>0).
写出y关于x的函数关系式,指出这个函数的定义域;
求鱼群年增长量的最大值;
当鱼群的年增长量达到最大值时,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知f(x)=
在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=
的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(Ⅰ)已知函数
,若存在
,使得
,则称
是函数
的一个不动点,设二次函数
.
(Ⅰ) 当
时,求函数
的不动点;
(Ⅱ) 若对于任意实数
,函数
恒有两个不同的不动点,求实数
的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,若函数
的图象上
两点的横坐标是函数
的不动点,且直线
是线段
的垂直平分线,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm;图2是双层中空玻璃,厚度均为4 mm,中间留有厚度为
的空气隔层.根据热传导知识,对于厚度为
的均匀介质,两侧的温度差为
,单位时间内,在单位面积上通过的热量
,其中
为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为
,空气的热传导系数为
.)![]()
(1)设室内,室外温度均分别为
,
,内层玻璃外侧温度为
,外层玻璃内侧温度为
,且
.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用
,
及
表示);
(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计
的大小?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
(0
x
10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com