【题目】设函数,
(1)求曲线在点处的切线方程;
(2)当时,不等式恒成立,求的取值范围.
【答案】(1)(2)
【解析】试题分析:(1)先求函数导数,再根据导数几何意义得切线斜率为,最后根据点斜式求切线方程(2)先化简不等式,并参变分离得,转化为利用导数求函数最小值,利用导数可得单调性,最后利用罗比达法则求最小值
试题解析:(1)根据题意可得, ,
,所以,即,
所以在点处的切线方程为,即.
(2)根据题意可得, 在恒成立,
令, ,
所以,
当时, ,所以函数在上是单调递增,
所以,
所以不等式成立,即符合题意;
当时,令,解得,令,解得,
当时, ,
所以在上,在上,
所以函数在上单调递增,在上单调递减,
,令,
恒成立,又,
所以,
所以存在,
所以不符合题意;
②当时,
在上恒成立,所以函数在上是单调递减,
所以
显然不符合题意;
综上所述, 的取值范围为
科目:高中数学 来源: 题型:
【题目】关于函数 ,看下面四个结论( ) ①f(x)是奇函数;②当x>2007时, 恒成立;③f(x)的最大值是 ;④f(x)的最小值是 .其中正确结论的个数为:
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .(x>0)
(1)函数f(x)在区间(0,+∞)上是增函数还是减函数?证明你的结论;
(2)若当x>0时,f(x)> 恒成立,求正整数k的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,圆C:x2+y2+4x﹣2y+m=0与直线x﹣ y+ ﹣2=0相切.
(1)求圆C的方程;
(2)若圆C上有两点M,N关于直线x+2y=0对称,且|MN|=2 ,求直线MN的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,圆的参数方程为为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.
(1)求圆的普通方程和直线的直角坐标方程;
(2)设直线与轴, 轴分别交于两点,点是圆上任一点,求两点的极坐标和面积的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们称满足: ()的数列为“级梦数列”.
(1)若是“级梦数列”且.求: 和的值;
(2)若是“级梦数列”且满足, ,求的最小值;
(3)若是“0级梦数列”且,设数列的前项和为.证明: ().
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某研究所计划利用“神十”宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生的收益来决定具体搭载安排,有关数据如下表:
每件产品A | 每件产品B | ||
研制成本、搭载 | 20 | 30 | 计划最大资金额 |
产品重量(千克) | 10 | 5 | 最大搭载重量110千克 |
预计收益(万元) | 80 | 60 |
分别用x,y表示搭载新产品A,B的件数.总收益用Z表示
(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(2)问分别搭载新产品A、B各多少件,才能使总预计收益达到最大?并求出此最大收益.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC A1B1C1中,侧棱垂直于底面,AB⊥BC, ,
E,F分别是A1C1,BC的中点.
(Ⅰ)求证:C1F∥平面ABE;
(Ⅱ)求三棱锥E-ABC的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com