精英家教网 > 高中数学 > 题目详情
16.以下有关命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则 x=1”的逆否命题为“若x≠1,则 x2-3x+2≠0
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.若 p∧q为假命题,则p,q均为假命题
D.对于命题 p:?x∈R使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0

分析 ①根据逆否命题的定义进行判断.
②根据充分条件和必要条件的定义进行判断
③根据复合命题的真假关系进行判断.
④根据含有量词的命题的否定进行判断.

解答 解:A.命题“若x2-3x+2=0,则 x=1”的逆否命题为“若x≠1,则 x2-3x+2≠0”,故A正确,
B.由x2-3x+2=0得x=1或x=1,则“x=1”是“x2-3x+2=0”的充分不必要条件,故B正确,
C.若 p∧q为假命题,则p,q至少有一个为假命题,故C错误,
D.命题 p:?x∈R使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0,正确故D正确.
故错误的是C,
故选:C.

点评 本题主要考查命题的真假判断,涉及四种命题真假关系,含有量词的命题的否定以及充分条件和必要条件的判断,综合性较强,但难度不大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.某学校采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做视力检查,现将800名学生从1到800进行编号,已知从49~64这16个数中被抽到的数是58,则在第2小组17~32中被抽到的数是(  )
A.23B.24C.26D.28

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R)在其定义域内有两个不同的极值点.
(Ⅰ)求a的取值范围;
(Ⅱ)记两个极值点分别为x1,x2,且x1<x2.已知λ>0,若不等式e1+λ<x1•x2λ恒成立,求λ的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设m.n是两条不同的直线,α是一个平面,下列命题中正确的是(  )
A.若m⊥n,n?α,则m⊥αB.若m∥α,n∥α,则m∥nC.若m⊥α,m⊥n,则n∥αD.m⊥α,m∥n,则n⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“a,b是异面直线”是指(  )
A.a?平面a,b?平面β且α∩β=∅B.a?平面α,b?平面α
C.a?平面α,b?平面βD.a∩b=∅且a不平行于b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若双曲线$E:\frac{x^2}{9}-\frac{y^2}{16}=1$的左、右焦点分别为F1、F2,点P在双曲线E上,且|PF1|=5,则|PF2|等于(  )
A.1或11B.1C.11D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.四棱锥P-ABCD中,AB⊥AD,AD⊥DC,PA⊥底面ABCD,PA=AD=AB=$\frac{1}{2}$CD=1,M为PB的中点,求直线CM与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.边长为4的菱形ABCD中,满足∠DCB=60°,点E,F分别是边CD和CB的中点,AC交BD于点H,AC交EF于点O,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABD,连接PA,PB,PD,得到如图所示的五棱锥P-ABFED.
(Ⅰ) 求证:BD⊥PA;
(Ⅱ) 求二面角B-AP-O的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的前n项和为Sn,且${S_n}={n^2}-4n$,则a2-a1=2.

查看答案和解析>>

同步练习册答案