精英家教网 > 高中数学 > 题目详情
5.边长为4的菱形ABCD中,满足∠DCB=60°,点E,F分别是边CD和CB的中点,AC交BD于点H,AC交EF于点O,沿EF将△CEF翻折到△PEF的位置,使平面PEF⊥平面ABD,连接PA,PB,PD,得到如图所示的五棱锥P-ABFED.
(Ⅰ) 求证:BD⊥PA;
(Ⅱ) 求二面角B-AP-O的正切值.

分析 (Ⅰ)根据面面垂直的性质定理即可证明BD⊥PA;
(Ⅱ) 建立空间坐标系,求出平面的法向量,利用向量法即可求二面角B-AP-O的正切值.

解答 证明:(1)因为平面PEF⊥平面ABD,平面PEF∩平面ABD=EF,PO?PEF,
∴PO⊥ABD
则PO⊥BD,又AO⊥BD,AO∩PO=O,AO?APO,PO?APO,
∴BD⊥平面APO,
∵AP?APO,∴BD⊥PA….(6分)
(2)以O为原点,OA为x轴,OF为y轴,OP为z轴,建立坐标系
则$O(0,0,0),A(3\sqrt{3},0,0),P(0,0,\sqrt{3}),B(\sqrt{3},2,0)$,…(8分)
设$\vec n=(x,y,z)为平面OAP的一个法向量$,
则$\vec n=(0,1,0)$,$\vec m=(x,y,z)为平面ABP的一个法向量$,
$\overrightarrow{AB}$=(-2$\sqrt{3}$,2,0),$\overrightarrow{AP}$=(-3$\sqrt{3}$,0,$\sqrt{3}$),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=0}\\{\overrightarrow{m}•\overrightarrow{AP}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{-2\sqrt{3}x+2y=0}\\{-3\sqrt{3}x+\sqrt{3}z=0}\end{array}\right.$,
令x=1,则y=$\sqrt{3}$,z=3,
则$\vec m=(1,\sqrt{3},3)$….(10分)
$cosθ=\frac{\vec m•\vec n}{{|{\vec m}||{\vec n}|}}=\frac{{\sqrt{3}}}{{\sqrt{13}}}$,
∴$tanθ=\frac{{\sqrt{30}}}{3}$…..(12分)

点评 本题主要考查线直线垂直的判定以及二面角的应用,建立坐标性,求出平面的法向量,利用向量法是解决本题的关键.综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前n项为Sn,且a1=$\frac{1}{2}$,an+1=$\frac{n+1}{2n}$an,则数列{an}的前14项和等于$\frac{2047}{1024}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.以下有关命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则 x=1”的逆否命题为“若x≠1,则 x2-3x+2≠0
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.若 p∧q为假命题,则p,q均为假命题
D.对于命题 p:?x∈R使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{(2a-1)x+a(x<2)}\\{lo{g}_{a}(x-1)(x≥2)}\end{array}\right.$是R上的减函数,则实数a的取值范围是(  )
A.[$\frac{1}{3}$,$\frac{1}{2}$)B.[$\frac{2}{5}$,$\frac{1}{2}$)C.[$\frac{2}{5}$,1)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.平面α与平面β平行的条件可以是(  )
A.α内有无数条直线都与β平行
B.直线a?α,直线b?β,且a∥β,b∥α
C.α内的任何直线都与β平行
D.直线a∥α,a∥β,且直线a不在α内,也不在β内

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示的几何体中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=$\frac{{\sqrt{2}}}{2}AB$,M是AB的中点.
(1)求证:CM⊥EM;
(2)求MC与平面EAC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知命题P:x2+x+4≥mx对一切的x<0恒成立,命题q:关于x的一元二次方程x2+(m-3)x+m+5=0的实数根均是正数,若“p∨q”为真,“p∧q”为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}和{bn}满足:a1=2,$n{a_{n+1}}=(n+1){a_n}+n(n+1),n∈{N^*}$,且对一切n∈N*,均有${b_1}{b_2}…{b_n}={(\sqrt{2})^{a_n}}$.
(1)求证:数列$\{\frac{a_n}{n}\}$为等差数列,并求数列{an}的通项公式;
(2)求数列{bn}的前n项和Sn
(3)设${c_n}=\frac{{{a_n}-{b_n}}}{{{a_n}{b_n}}}(n∈{N^*})$,记数列{cn}的前n项和为Tn,求正整数k,使得对任意n∈N*,均有Tk≥Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知{an}的通项公式为an=(-1)n•n+2n,n∈N+,则前2n项和S2n=n+22n+1-2.

查看答案和解析>>

同步练习册答案