精英家教网 > 高中数学 > 题目详情
4.设m.n是两条不同的直线,α是一个平面,下列命题中正确的是(  )
A.若m⊥n,n?α,则m⊥αB.若m∥α,n∥α,则m∥nC.若m⊥α,m⊥n,则n∥αD.m⊥α,m∥n,则n⊥α

分析 在A中,m与α相交、平行或m?α;在B中,m与n相交、平行或异面;在C中,n∥α或n?α;在D中,由线面垂直的判定定理得n⊥α.

解答 解:由m,n是两条不同的直线,α是一个平面,知:
在A中,若m⊥n,n?α,则m与α相交、平行或m?α,故A错误;
在B中,若m∥α,n∥α,则m与n相交、平行或异面,故B错误;
在C中,若m⊥α,m⊥n,则n∥α或n?α,故C错误;
在D中,若m⊥α,m∥n,则由线面垂直的判定定理得n⊥α,故D正确.
故选:D.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足an=(-1)n•(2n+1),求{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的前n项为Sn,且a1=$\frac{1}{2}$,an+1=$\frac{n+1}{2n}$an,则数列{an}的前14项和等于$\frac{2047}{1024}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥S-ABCD中,所有侧棱长与底面边长均相等,E为SC的中点.求证:
(Ⅰ) SA∥平面BDE;
(Ⅱ) SC⊥BD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow{a}$=(2,2,1),$\overrightarrow{b}$=(3,5,3),则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,四棱锥P-ABCD的底面为正方形,PA⊥底面ABCD,PA=AD.E,F分别为底边AB和侧棱PC的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求证:EF⊥FD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.以下有关命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则 x=1”的逆否命题为“若x≠1,则 x2-3x+2≠0
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.若 p∧q为假命题,则p,q均为假命题
D.对于命题 p:?x∈R使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{(2a-1)x+a(x<2)}\\{lo{g}_{a}(x-1)(x≥2)}\end{array}\right.$是R上的减函数,则实数a的取值范围是(  )
A.[$\frac{1}{3}$,$\frac{1}{2}$)B.[$\frac{2}{5}$,$\frac{1}{2}$)C.[$\frac{2}{5}$,1)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}和{bn}满足:a1=2,$n{a_{n+1}}=(n+1){a_n}+n(n+1),n∈{N^*}$,且对一切n∈N*,均有${b_1}{b_2}…{b_n}={(\sqrt{2})^{a_n}}$.
(1)求证:数列$\{\frac{a_n}{n}\}$为等差数列,并求数列{an}的通项公式;
(2)求数列{bn}的前n项和Sn
(3)设${c_n}=\frac{{{a_n}-{b_n}}}{{{a_n}{b_n}}}(n∈{N^*})$,记数列{cn}的前n项和为Tn,求正整数k,使得对任意n∈N*,均有Tk≥Tn

查看答案和解析>>

同步练习册答案