分析 ${S_n}=\frac{2}{3}{a_n}+1$,当n=1时,a1=S1=$\frac{2}{3}{a}_{1}$+1,解得a1.n≥2时,an=Sn-Sn-1,利用等比数列的通项公式即可得出.
解答 解:∵${S_n}=\frac{2}{3}{a_n}+1$,∴n=1时,a1=S1=$\frac{2}{3}{a}_{1}$+1,解得a1=3.n≥2时,an=Sn-Sn-1=$\frac{2}{3}{a}_{n}$+1-$(\frac{2}{3}{a}_{n-1}+1)$,化为:an=-2an-1,
则{an}是等比数列,公比为-2,首项为3.
∴通项公式是an=3×(-2)n-1,
故答案为:3×(-2)n-1.
点评 本题考查了等比数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=x2+1 | B. | y=-x2+1 | C. | $y=-{x^2}+1,x∈[{-\sqrt{2},\sqrt{2}}]$ | D. | y=x2+1,x∈[-$\sqrt{2}$,$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 未发病 | 发病 | 合计 | |
| 未注射疫苗 | 20 | x | A |
| 注射疫苗 | 30 | y | B |
| 合计 | 50 | 50 | 100 |
| P( K2≤K0) | 0.05 | 0.01 | 0.005 | 0.001 |
| K0 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 20$\sqrt{91}$ m | B. | 20$\sqrt{31}$ m | C. | 500 m | D. | 60$\sqrt{66}$ m |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com