精英家教网 > 高中数学 > 题目详情
函数f(x)=lnx-
1
x
的单调增区间是
 
考点:函数的单调性及单调区间
专题:计算题,函数的性质及应用,导数的综合应用
分析:求出函数的定义域为(0,+∞),再求函数的导数,判断符号,即可得到增区间.
解答: 解:函数f(x)=lnx-
1
x
的定义域为(0,+∞),
f′(x)=
1
x
+
1
x2
>0恒成立,
则f(x)的单调增区间为(0,+∞).
故答案为:(0,+∞).
点评:本题考查函数的单调区间的求法,考查导数的运用,求出函数的定义域是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足a1a2…an=2bn-n,若{an}为等比数列,且a1=1,b2=b1+2.
(Ⅰ)求an与bn
(Ⅱ)设cn=
1
an
-
1
bn
(n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,已知直线l的极坐标方程 为ρsin(θ+
π
4
)=1,圆C的圆心是C(1,
π
4
),半径为1,求:
(1)圆C的极坐标方程;
(2)直线l被圆C所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(x1,y1),B(x2,y2)是f(x)=
1
2
+log2
x
1-x
图象上任意两点,设点M(
1
2
,b)为AB的中点,若Sn=f(
1
n
)+f(
2
n
)+f(
3
n
)+…+f(
n-1
n
),其中n∈N+,则n≥2,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆的方程x2+(y-1)2=4,过点A(0,3)作圆的割线交圆与点P,求AP的中点的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形 A BC中,A,B,C是三角形 A BC的内角,设函数f(A)=2sin
B+C
2
sin(π-
A
2
)+sin2(π+
A
2
)-cos2
A
2
,则f( A)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式f(x)=|x-2|-|x-1|
(Ⅰ)若f(x)≤m的解集为R,求m的最小值;
(Ⅱ)若f(x)最大值为n且a+b+c=n,求证:a2+b2+c2
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题:
①在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直;
②已知平面α,β的法向量分别为
u
v
,则α⊥β?
u
v
=0;
③两条异面直线所成的角为θ,则0≤θ≤
π
2

④直线与平面所成的角为φ,则0≤φ≤
π
2

其中正确的命题是(  )
A、①②③B、②③④
C、①②④D、①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=
f(x-4),x>0
2x+
π
6
0
cos3tdt,x≤0
,则f(2014)=
 

查看答案和解析>>

同步练习册答案