精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)讨论的单调性;

(2)已知的两个零点,证明:.

【答案】(1)见解析(2)见解析

【解析】分析:(1)首先确定函数的定义域,之后对函数求导,对参数进行讨论,当导数大于零时单调增,当导数小于零时单调减;

(2)由函数有两个零点,根据第一问的结论,可以断定分别将两个零点代入函数解析式,得到两个方程,将两式相减得到,即,之后将问题转化,构造新函数,利用导数研究函数的性质,从而证得结果.

详解:(1)函数的定义域为

恒成立,

上单调递增,

时,

,令

上单调递增,上单调递减.

(2)由的两个零点及(1)知

,两式相减得,即

要证,只需证

即证,即证

不妨设,令,只需证

,则

,则,∴上单减,

,∴上单增,

,即时恒成立,原不等式得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四面体P﹣ABC的外接球的球心O在AB上,且PO⊥平面ABC,2AC= AB,若四面体P﹣ABC的体积为 ,则该球的体积为(
A.
B.2π
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称与否和年龄有关;说明你的理由;(下面的临界值表供参考) (参考公式:K2= ,其中n=a+b+c+d)

P(K2≥k0

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879


(2)现计划在这次场外调查中按年龄段选取6名选手,并抽取3名幸运选手,求3名幸运选手中在20~30岁之间的人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在亚丁湾海域执行护航任务的中国海军“徐州”舰,在A处收到某商船在航行中发出求救信号后,立即测出该商船在方位角方位角(是从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角)为45°、距离A处为10 n mile的C处,并测得该船正沿方位角为105°的方向,以9 n mile/h的速度航行,“徐州”舰立即以21 n mile/h的速度航行前去营救.

(1)“徐州”舰最少需要多少时间才能靠近商船?

(2)在营救时间最少的前提下,“徐州”舰应按照怎样的航行方向前进?(角度精确到0.1°,时间精确到1min,参考数据:sin68.2°≈0.9286)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在(﹣1,+∞)上单调,且函数y=f(x﹣2)的图象关于x=1对称,若数列{an}是公差不为0的等差数列,且f(a50)=f(a51),则{an}的前100项的和为(
A.﹣200
B.﹣100
C.0
D.﹣50

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,则f(f(﹣2))= , 若f(x)≥2,则x的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别是角A,B,C的对边,b= sinB,且满足tanA+tanC= . (Ⅰ)求角C和边c的大小;
(Ⅱ)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx+x(x﹣a)2(a∈R),若存在 ,使得f(x)>xf'(x)成立,则实数a的取值范围是(
A.
B.
C.
D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=a lnx+x (a≠0).

(1)若曲线yf (x)在点(1,f (1))处的切线与直线x-2y=0垂直,求实数a的值;

(2)讨论函数f (x)的单调性.

查看答案和解析>>

同步练习册答案