精英家教网 > 高中数学 > 题目详情
18.定义在(-1,1)上的函数f(x)满足:(1)对任意x,y∈(-1,1),都有f(x)+f(y)=f($\frac{x+y}{1+xy}$)(2)当x∈(-1,0)时,有f(x)>0
(Ⅰ)试判断函数f(x)的奇偶性并证明;
(Ⅱ)判断f(x)的单调性并证明;
(Ⅲ)求不等式f(x)+f(x-1)<0的解集.

分析 (Ⅰ)利用赋值法,x=y=0求出f(0)的值,结合y=-x,利用已知条件,推出函数是奇函数即可;
(Ⅱ)先设0<x1<x2<1,然后作差求f(x1)-f(x2),根据题目条件进行化简变形判定其符号,根据函数单调性的定义即可判定;
(Ⅲ)运用奇函数的定义和单调性,可得f(x)<-f(x-1)=f(1-x),即有-1<1-x<x<1,解不等式即可得到所求解集.

解答 解:(Ⅰ)f(x)在(-1,1)上为奇函数.
理由:由x=y=0得f(0)+f(0)=f($\frac{0+0}{1+0}$)=f(0),
∴f(0)=0,
任取x∈(-1,1),则-x∈(-1,1),
f(x)+f(-x)=f($\frac{x-x}{1-{x}^{2}}$)=f(0)=0.
∴f(x)+f(-x)=0,
即f(x)=-f(-x),
∴f(x)在(-1,1)上为奇函数.
(Ⅱ)f(x)在(-1,1)上单调递减.
理由:设0<x1<x2<1,
则f(x1)-f(x2)=f(x1)+f(-x2)=f($\frac{{x}_{1}-{x}_{2}}{1-{x}_{1}{x}_{2}}$).
而x1-x2<0,0<x1x2<1所以-1<$\frac{{x}_{1}-{x}_{2}}{1-{x}_{1}{x}_{2}}$<0,
∵当x∈(-1,0)时,f(x)>0
∴f(x1)-f(x2)=f(x1)+f(-x2)=f($\frac{{x}_{1}-{x}_{2}}{1-{x}_{1}{x}_{2}}$)>0,
即当x1<x2时,f(x1)>f(x2).
∴f(x)在(0,1)上单调递减,
∵f(x)在(-1,1)上为奇函数,
∴f(x)在(-1,1)上单调递减;
(Ⅲ)不等式f(x)+f(x-1)<0即为
f(x)<-f(x-1)=f(1-x),
由f(x)在(-1,1)上单调递减,
可得-1<1-x<x<1,
解得$\frac{1}{2}$<x<1,
则不等式的解集为($\frac{1}{2}$,1).

点评 本题主要考查了函数的单调性的判定与证明,以及函数奇偶性的判定,函数的奇偶性是函数在定义域上的“整体”性质,单调性是函数的“局部”性质,考查不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若sinα=$\frac{k+1}{k-3}$,cosα=$\frac{k-1}{k-3}$,则$\frac{1}{tanα}$的值为(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若不等式(-1)n+1•($\frac{2}{3}$)n•(2a-1)<1对一切正整数n恒成立,则实数a的取值范围是-$\frac{1}{4}$<a<$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知△ABC的三个顶点A(m,n),B(-2,0),C(4,-2),x轴平分∠ABC,且A在直线y=2x上,则直线AC与坐标轴围成三角形的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知sin(α-β)cosα-cos(β-α)sinα=$\frac{4}{5}$,β是第三象限的角,求sin(β+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tanx=2,求2sin2x-3sinxcosx+cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:$\frac{si{n}^{3}(-α)cos(α+5π)tan(α+2π)}{co{s}^{3}(-2π-α)sin(-α-π)ta{n}^{3}(4π+α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}首项是a1=1,且满足递推关系${a_{n+1}}=2{a_n}+{2^n}(n∈{N^*})$.
(1)证明:数列$\left\{{\frac{a_n}{2^n}}\right\}$是等差数列,并求数列{an}的通项公式;
(2)求等差数列$\left\{{b_n}\right\}(n∈{N^*})$使得对一切自然数n∈N*都有如下的等式成立:${b_1}C_n^0+{b_2}C_n^1+{b_3}C_n^2+…+{b_{n+1}}C_n^n={a_{n+1}}$;
(3)cn=nbn,是否存在正常数M使得$\frac{c_1}{a_1}+\frac{c_2}{a_2}+…+\frac{c_n}{a_n}<M$对n∈N*恒成立,并证明你的结论.

查看答案和解析>>

同步练习册答案