精英家教网 > 高中数学 > 题目详情
9.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为(  )
A.4B.5C.6D.7

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算变量S的值,并输出满足退出循环条件时的k值,模拟程序的运行,对程序运行过程中各变量的值进行分析,即可得解.

解答 解:模拟执行程序框图,可得
S=0,n=0
满足条,0≤k,S=3,n=1
满足条件1≤k,S=7,n=2
满足条件2≤k,S=13,n=3
满足条件3≤k,S=23,n=4
满足条件4≤k,S=41,n=5
满足条件5≤k,S=75,n=6

若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5,
则输入的整数k的最大值为4.
故选:A.

点评 根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模,本题属于基础知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.对任意复数z=x+yi(x、y∈R),定义g(z)=3x(cosy+isiny).
(1)若g(z)=3,求相应的复数z;
(2)计算g(2+$\frac{π}{4}$i),g(-1+$\frac{π}{4}$i),g(1+$\frac{π}{2}$i)并构造它们之间的一个等式,由此发现一个更一般的等式,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设f(x)=$\left\{\begin{array}{l}{\frac{sinax}{\sqrt{1-cosx}},-π<x<0}\\{b,x=0}\\{\frac{1}{x}(lnx-ln({x}^{2}+x),x>0}\end{array}\right.$连续,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}为等比数列,满足a4+a7=2,a2•a9=-8,则a1+a13的值为(  )
A.7B.17C.-$\frac{17}{2}$D.17或-$\frac{17}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设空间任意一点O和不共线的三点A,B,C,若点P满足向量关系$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(x+y+z=1),试问:P,A,B,C四点是否共面?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.-$\frac{7π}{5}$是第(  )象限的角.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知圆的方程为x2+y2+6x一4y-3=0,设该圆中过点(-1,4)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是(  )
A.8$\sqrt{2}$B.16$\sqrt{2}$C.32$\sqrt{2}$D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.定义在(-1,1)上的函数f(x)满足:(1)对任意x,y∈(-1,1),都有f(x)+f(y)=f($\frac{x+y}{1+xy}$)(2)当x∈(-1,0)时,有f(x)>0
(Ⅰ)试判断函数f(x)的奇偶性并证明;
(Ⅱ)判断f(x)的单调性并证明;
(Ⅲ)求不等式f(x)+f(x-1)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)是定义在(-∞,+∞)上的奇函数,当x∈(-∞,0)时,f(x)=x+cosx,则当x∈(0,+∞)时,f(x)=x-cosx.

查看答案和解析>>

同步练习册答案