精英家教网 > 高中数学 > 题目详情

【题目】某公司在招聘员工时,要进行笔试,面试和实习三个过程.笔试设置了3个题,每一个题答对得5分,否则得0分.面试则要求应聘者回答3个问题,每一个问题答对得5分,否则得0分.并且规定在笔试中至少得到10分,才有资格参加面试,而笔试和面试得分之和至少为25分,才有实习的机会.现有甲去该公司应聘,假设甲答对笔试中的每一个题的概率为,答对面试中的每一个问题的概率为

1)求甲获得实习机会的概率;

2)设甲在去应聘过程中的所得分数为随机变量,求的分布列和数学期望.

【答案】1;(2)分布列见解析,

【解析】

1)笔试和面试得分之和为25分的情况为:笔试和面试得分分别为1015;或1510.利用相互独立与互斥事件概率计算公式即可得出.笔试和面试得分之和为30分的情况为:笔试和面试得分都为15.利用相互独立与互斥事件概率计算公式即可得出.

2的取值为051015202530,对笔试和面试得分情况分类讨论,分别利用相互独立与互斥事件概率计算公式即可得出.

1)笔试和面试得分之和为25分的概率为

笔试和面试得分之和为30分的概率为

∴甲获得实习机会的概率

2的取值为051015202530

由(1)可知:笔试和面试得分之和为25分的概率

笔试和面试得分之和为30分的概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中, PA=AB=BC=2. EPC的中点.

1)证明:

2)求三棱锥P-ABC的体积;

3 证明:平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的上下两个焦点分别为 ,过点轴垂直的直线交椭圆两点, 的面积为,椭圆的离心力为

(Ⅰ)求椭圆的标准方程;

(Ⅱ)已知为坐标原点,直线 轴交于点,与椭圆交于 两个不同的点,若存在实数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C)的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆C截得的线段长为3

1)求椭圆C的方程;

2)点P是椭圆C上除长轴端点外的任一点,连接,设的角平分线PMC的长轴于点,求m的取值范围;

3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点设直线的斜率分别为,若,试证明为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有( )种

A. 19B. 7C. 26D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线在平面直角坐标系下的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求曲线的普通方程及极坐标方程;

(2)直线的极坐标方程是,射线 与曲线交于点与直线交于点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在点处的切线方程为,求的值;

(2)若在区间上,函数的图象恒在直线下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数的图象与坐标轴的交点都在圆上.

1)求圆的方程;

2)直线交圆两点,且,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,对称轴为坐标轴,它与双曲线交于点,抛物线的准线过双曲线的左焦点.

1)求抛物线与双曲线的标准方程;

2)若斜率为的直线过点且与抛物线只有一个公共点,求直线的方程.

查看答案和解析>>

同步练习册答案