精英家教网 > 高中数学 > 题目详情
求函数f(x)=2x3+3x2-12x+14的在[-3,4]上的最大值与最小值.
考点:利用导数求闭区间上函数的最值
专题:综合题,导数的概念及应用
分析:求导函数,确定函数的单调性,可得函数的极值与端点函数值比较,即可得到结论.
解答: 解:由题可得f′(x)=6x2+6x-12=0,
令f′(x)=0,解得x=1,-2,
∴函数在(-3,-2),(1,4)上单调递增,在(-2,1)上单调递减,
又f(-3)=20,f(-2)=34,f(1)=7,f(4)=142,
∴函数f(x)=2x3+3x2-12x+14的在[-3,4]上的最大值为142,最小值7.
点评:本题考查导数知识的运用,考查函数的最值,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC中,已知tanA=-
5
12
,则cos(
3
2
π+A)-sin(
7
2
π-A)的值为(  )
A、
7
13
B、-
7
13
C、
17
13
D、-
17
13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
3
ax3+(a-1)bx2-2x+1,a∈R.
(1)当b=1时,讨论函数y=f(x)的单调区间;
(2)若a=2且函数y=f(x)在(1,2)上存在增区间,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知圆O:x2+y2=1与x轴交于A、B两点,与y轴的正半轴交于点C,M是圆O上任意点(除去圆O与两坐标轴的交点).直线AM与直线BC交于点P,直线CM与x轴交于点N,设直线PM、PN的斜率分别为m、n.
(Ⅰ)求直线BC的方程;
(Ⅱ)求点P、M的坐标(用m表示);
(Ⅲ)是否存在一个实数λ,使得m+λn为定值,若存在求出λ,并求出这个定值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆半径r=3,圆心在二次函数y=-(x+2)2的图象上,直线y=x+2被这个圆截得的弦长为2
7
,求这个圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+ax-
1
4
a-
1
2

(1)若函数f(x)的值域为(-∞,0],求实数a的值;
(2)当x∈[0,1]时,函数f(x)的最大值为2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=
x
(x-a).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求平方值小于1000的最大正整数,写出一个算法的程序.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=2,且对任意的正整数n,m,都有an+m=an+am
(Ⅰ)求出a2,a3,a4
(Ⅱ)猜想数列{an}的通项公式an,并用数学归纳法证明.

查看答案和解析>>

同步练习册答案